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ABSTRACT
Artificial intelligence (AI) is becoming increasingly pervasive
in our everyday lives. There are consequently many common
misconceptions about what AI is, what it is capable of, and
how it works. Compounding the issue, opportunities to learn
about AI are often limited to audiences who already have ac-
cess to and knowledge about technology. Increasing access
to AI in public spaces has the potential to broaden public AI
literacy, and experiences involving co-creative (i.e. collabo-
ratively creative) AI are particularly well-suited for engaging
a broad range of participants. This paper explores how to
design co-creative AI for public interaction spaces, drawing
both on existing literature and our own experiences designing
co-creative AI for public venues. It presents a set of design
principles that can aid others in the development of co-creative
AI for public spaces as well as guide future research agendas.

Author Keywords
collaboration; public displays; reflection on design processes;
co-creative AI; human-centered AI

CCS Concepts
•Human-centered computing → Empirical studies in inter-
action design; •Computing methodologies → Artificial intel-
ligence;

INTRODUCTION
Artificial intelligence (AI) is becoming increasingly prevalent
in our everyday lives–in places as personal as our social media
news feeds, cars, and homes. However, there are still many
misconceptions regarding what exactly AI is, what it is ca-
pable of, and how it works. There are few opportunities to
learn about AI outside of a university setting, and the online
resources that do exist primarily cater to an already tech-savvy
audience (e.g. online tutorials, cloud services for machine
learning (ML), ML APIs).

Recent exploratory research has investigated how to com-
municate “big ideas” about AI to a non-expert audience–for
example, the idea that computers perceive the world through
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sensors or that computers learn from data [80]. Many tool-kits
that cater to non-expert audiences focus on providing learners
with the tools to “tinker” with AI through the programming of
robots or AI-powered cloud services such as Cozmo, Sphero,
Alexa, and Google Assistant (e.g. [81, 17, 41]), see [80] for an
exhaustive list). These tool-kits have (to date) been designed
primarily for K-12 classroom activities and are accompanied
by curricula and worksheets (e.g. [81]). Museums and other
public spaces can serve as alternative venues for AI literacy
initiatives, complementing interventions in the formal educa-
tion sphere and broadening access to opportunities to both
interact with and learn about AI to both adults and children
who may not have AI devices in their homes or schools.

Co-creative (i.e. collaboratively creative) AI (c.f. [16, 56, 32,
38, 93]) may be particularly well-suited for AI literacy initia-
tives in public spaces. Co-creation (i.e. “a social creativity
process ‘leading to the emergence and sharing of creative activ-
ities and meaning in a socio-technical environment”’ [42, 22])
has been shown to be a powerful in-road for learning about
computing-related disciplines, even for communities that may
not otherwise be interested in–or feel included in–computing
[57, 7, 28]. The social, open-ended nature of co-creative
experiences also makes them well-suited for engaging partici-
pants in free-choice informal learning environments [20]. AI
systems that can engage as active participants in co-creative
activities therefore have potential to serve as avenues for AI
literacy in public spaces.

Recent work has called on AI researchers to share their work
with the public [80], but there is not much guidance provided
on how to effectively transform a research project into a public
installation. In this paper, we aim to contribute to a better
understanding of our central research question: what design
principles should be considered when designing co-creative
AI for public interaction spaces in order to better educate
and engage the public? We will address this question by
examining the broader literature on designing technology for
public spaces as well as engaging in reflective practice [75,
95] to draw on knowledge gained from our own experiences
developing co-creative AI for public spaces.

RELATED WORK
Research that touches on how to design co-creative AI for use
in public spaces is still in its early stages. There is a body of
research focused on how to design and develop expressive [58]
and co-creative [42] AI. Some of these projects have been used
in public spaces (e.g. [60]), although the literature focuses
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mostly on designing for co-creativity and artistic expression,
not public use. Recent literature at the intersection of HCI and
AI/ML research is investigating new design considerations that
may need to be taken into account when developing AI/ML
algorithms for (mostly online) public use [92, 62]. There is
also a significant body of research on interactive technology
and its use in public art installations and museum exhibits that
can inform our work. For example, Snibbe and Raffle present
a number of principles for designing social immersive media
in museums, and while they do not focus specifically on AI, a
number of their projects involve AI technologies [78]. In this
section, we explore six different themes/common threads that
we have identified in the literature.

Design for Apprehendability
Public-facing installations are installed in places such as muse-
ums where visitors frequently suffer from cognitive overload
[19, 1], finding it hard to focus due to an excess of external
stimuli. Allen suggests that exhibits should be designed such
that people interacting with them for the first time can im-
mediately understand their “purpose, scope, and properties”
[1], thus reducing cognitive load. She calls this immediate
apprehendability. Snibbe and Raffle [78] reinforce this idea,
emphasizing the importance of designing exhibits that are
immediately responsive to participants’ actions. Others have
echoed this notion by calling for more naturalistic, apprehend-
able modes of interaction such as Kinect-based embodied
interaction in art museums [44], tangible programming blocks
in science museums [33], and voice interaction with a robot
tour guide at a public expo [40]. When designed with ob-
ject affordances [25, 64] and intuitive mappings [2] in mind,
such interfaces are able to engage a wide range of participants,
including those with low computational literacy [34].

Design for Collaboration
Public spaces are also social spaces. Most people visiting
museums come in groups [30], and research in urban design
has revealed that facilitating social interaction is a critical com-
ponent to consider when designing public spaces in cities [89].
Social interaction and collaboration also play an important
role in the learning process [86, 49]. However, depending
on their design, introducing interactive technologies in public
spaces can actually inhibit social interaction [30]. A variety
of existing work suggests that technology in public spaces
should be designed explicitly to be supportive of group inter-
action (e.g. [33, 78]). Snibbe and Raffle even argue that “user
engagement...should become richer as more people interact”
[78]. Strategies like providing multiple access points to an
exhibit [34], allowing for multiple levels of engagement [11],
and making interactions with the exhibit/artifact visible to
passersby [91] can all help to encourage collaboration. Ben-
gler et al. emphasize that even if “active collaboration” is not
occurring due to contextual reasons (e.g. crowding or a lack
of familiarity between participants), exhibits should at least
allow for participants to feel connected to each other [3].

Design for Learning
Engagement with public exhibits is often very brief (typical
“dwell time” at many science museums is around 30 seconds

[35]), but time-on-task is an important factor in learning en-
vironments [23]. Designers of public exhibits focused on
facilitating learning often advocate designs that encourage “ex-
tended and repeated engagement” [34] and “active prolonged
engagement” [36]. Quality of engagement also plays an impor-
tant role in learning–Humphrey et al. suggest that learning is
best facilitated by exhibits that encourage active sense-making
[36] and Hornecker and Sifter suggest that exhibits for learning
should facilitate intellectual engagement that extends beyond
just free play [34]. In addition to designing the exhibit itself
to facilitate active learning, others have augmented exhibits
with interactive “contemplation rooms” that strive to provide
additional information to promote learning about the exhibit
content [44].

One way to encourage people to learn about AI is to create
“explainable” agents that can help participants to understand
their decision-making process [47]. Recent work has shown
that increasing transparency about both the existence and ca-
pabilities of AI algorithms can change users’ experiences and
perceptions of AI [18]. Explainability of agent reasoning is
easier to achieve when the agent’s task is well-specified and
goal-oriented [67, 48]. Since co-creative tasks are often poorly-
specified and exploratory (or autotelic), co-creative agent ex-
plainability is challenging. AI that uses more “black-box”
techniques like neural networks and reinforcement learning in
place of symbolic reasoning makes explainability even more
difficult to accomplish. Notable advances have been made
in interpreting the results of neural networks that operate on
input data like images [65, 94]. Others have taken inspiration
from how humans justify their decision-making post-hoc and
use separate AI subsystems to generate explanations after an
agent has already acted (e.g. [18]).

Design for Creative Engagement
Designing to facilitate creative engagement has also been a fo-
cus of a number of public art installations, and can contribute
to an understanding of how to design co-creative agents for
similar spaces. Bilda et al. suggest that participants engaging
with public interactive artworks progress sequentially from
being initially attracted to an installation to engaging in sus-
tained interaction with the installation and finally to relating
their interaction with the installation to experiences outside of
the installation space [4]. Designers should consider this pro-
gression and design features of the installation that encourage
participants to move from one stage to the next [4].

Wouters et al. also suggest a number of design principles
for encouraging participants to transition between different
interaction roles (e.g. passer-by, participant, dropout) when
interacting with public art installations [91]. These princi-
ples include advertising the installation and making it visible
to passers-by, creating spaces that facilitate observation and
social interaction, incorporating collaborative features and
surprising moments into the design, allowing for multiple de-
grees of interaction with the system, and creating an activation
loop in which dropouts can encourage passers-by or audience
members to become participants.

Finally, a body of research has contributed to a better under-
standing of what factors increase perceptions of creativity



in interactions with creativity support tools and co-creative
agents. A computational system’s perceived level of skill,
imagination, and appreciation of its own outputs directly affect
collaborator perceptions of the system’s creativity in turn [12].
Additionally, the ability of a computational system to pleas-
antly surprise its collaborator over the course of an interaction
is an important factor in facilitating co-creative interactions
[26]. A participant’s perceived sense of control, challenge,
and satisfaction [3] during a computer-mediated creative in-
teraction also encourage participants to enter a flow state [13].
Designing for increased immersion, satisfaction, enjoyment,
collaboration, exploration, and expressiveness [8] also allows
computational tools to better support participant creativity.

Design for Robustness and Safety
Introducing technological artifacts in public spaces requires
a level of robustness and safety that is not typical of many
research projects. Jensen et al. discuss the safety features built
into a robotic tour guide, placing an emphasis on the need
for redundant features and emergency safety controls [40].
Horn et al. also highlight inexpensiveness and reliability as
key design principles to consider when creating tangible user
interfaces for museums [33]. It is also important to consider
the interplay between the environment and the technology. For
example, both Jensen et al. and Bengler et al. discuss dealing
with technological complications due to ambient noise/light
in public spaces [40, 3].

Balancing Design Concerns with Research Goals
Balancing the aforementioned design principles for public
spaces with research and evaluation needs is not always
straightforward. Designing for public spaces presents unique
challenges for researchers, such as difficulty comparing iter-
ations of a project across different venues, conflict between
“the artistic impulse to improve an exhibit...with the need for
experimental control”, aligning research questions with the
theme of the creative work, and obtaining informed consent in
public spaces [68].

In addition to these concerns, understanding how to assess and
rigorously evaluate interactive technology in public spaces is
still an open research question. Heath and von Lehm call for
new methods of evaluating interactions at the “exhibit face”
[30], and recent work has explored a variety of strategies for
evaluating/understanding factors such as learning, collabora-
tion, and creativity including mixed-method approaches [3],
video analysis [14, 36], and conversation analysis [70].

Takeaways
The body of literature on designing technology for museums
and art spaces provides a foundation for exploring the design
of co-creative agents for public spaces. However, none of this
work focuses specifically on introducing co-creative agents
into public spaces, and only a few of the papers presented
draw on experiences from more than one installation. We will
build on the existing work in the next sections by reflecting on
our experience developing a variety of co-creative agents for a
diverse range of public spaces over the course of several years
to suggest design principles that both support and add to the
principles that have been highlighted in the literature so far.

METHODOLOGY - REFLECTIVE PRACTICE
Schön originally characterized design as a reflective practice,
in which designers reflect on their actions in order to contribute
to a growing body of design knowledge and methodologies
[75]. Reflective practice has since been recognized within the
interaction design and HCI communities as a useful research
methodology in which designed artifacts can become “exem-
plars” or “conduit[s] for research findings to easily transfer
to the HCI research and practice communities” [95], and re-
flection on the design process and the themes that the artifacts
embody can improve both design practice [95] and contribute
to design theory [24]. Snibbe and Raffle’s paper on designing
social immersive media for museums is a good example of
reflective design practice utilized in a relevant domain [78].

In this paper, we reflect on our practice as designers of co-
creative AI in public spaces, drawing on our experience itera-
tively designing a variety of different co-creative installations
involving AI technologies over the past five years. We define
public space as any physical space to which the general public
has access–including urban spaces, museums, art galleries,
and public events or “happenings” [43] (although our expe-
riences draw primarily on the latter three). For the sake of
this paper, online/virtual “public” spaces are not considered.
The exhibits we will be discussing in this paper are briefly
described below.

LuminAI (Fig 1) is an installation in which a human participant
and an AI agent can dance together [38]. A Kinect motion cap-
ture device is used to detect the participant’s motion, which
is visualized as a virtual “shadow” on a projection screen.
Next to the shadow is a humanoid “agent”, which dances by
analyzing the participant’s movement and responding with
a movement that it deems to be similar in terms of parame-
ters such as energy, tempo, or size (adapted from Viewpoints
movement theory [6]). The agent interactively learns gestures
from the participant as they dance together.

The Robot Improv Circus (Fig 1) is an interactive installa-
tion in which participants can take turns improvising open-
ended comedic interactions using abstract props together with
a robotic scene partner in virtual reality (VR), while an audi-
ence can view and reflect on the improvised performance from
outside the circus tent through portals into the virtual world.
The virtual improviser generates action candidates based on
the physical attributes of the prop and the ongoing interaction.
It chooses its response in real-time in order to satisfy an intrin-
sic motivation or drive to follow a given “creative arc” over
the duration of the improvised performance. The creative arc
is a designer-specified trajectory through the space of novelty,
unexpectedness, and quality, where these properties are com-
puted for each action that the agent considers. Creative arcs
allow the designer some artistic control over the agent’s impro-
visation while still providing participants with a qualitatively
evolving experience over the course of the improvisation.

Sound Happening (Fig 1) is a playspace in which participants
can collaboratively create music together by moving colorful
balls around a defined interaction space [54]. An overhead
camera and computer vision software tracks the location and
the color of the balls and a computer generates music accord-



Figure 1: Installations, from left to right. 1) LuminAI; 2) The audience view of the Robot Improv Circus VR experience. Text in
the robot’s speech bubble reads, "I am looking with my kaleidoscope"; 3) Sound Happening; 4) The Shape of Story

ing to those parameters. Certain events (e.g. all balls meeting
in the center of the interaction space) trigger special sound
effects.

Shape of Story (Fig 1) is a story circle experience in which
participants collectively create a story line-by-line [53]. Par-
ticipants speak into a listening device and AI in narrative
understanding is used to interpret their words. The semantic
meaning of participants’ words is translated into a symbolic
visual language, which is drawn in real-time on a projected
“painting” in the center of the story circle. The result is a
narrative art piece that is co-created by the participants telling
the story and the agent creating the visualization. The physical
installation surrounding the story circle is set up to create a
comfortable, intimate [52] environment, not unlike gathering
around a campfire to share stories. Participants enter and exit
the installation through a hallway where they can view “paint-
ings” created by previous groups. The interaction experience
is led by a facilitator.

We have publicly exhibited the aforementioned projects at a
variety of different venues–including academic conferences,
art festivals, museums, and other local venues. We have experi-
ence working with a variety of installation timeframes (month,
week, and day-long), participants of all ages from all over
the world, and different sets of spatial and environmental con-
straints. We have also worked with a variety of partners during
the design process, including museum educators and practi-
tioners, artists, evaluators, and other researchers. A complete
list of the public installations of our projects used to develop
the design principles described in this paper is included in
Table 1. We also provide a list of which design principles were
derived from which installation in Table 1.

In keeping with reflective practice in the context of design
research as our methodology, we reflected on a) the physi-
cal, technical, and experience design of the installations and
how they changed over time; b) our design process and re-
search/evaluation methodologies; and c) the nature of par-
ticipant interaction with the installations. Data that we con-
sulted in our reflection process included: group discussions
and archived meeting notes detailing our collective experi-
ences during the design, evaluation, and research processes;
observations and findings from video analysis, interviews, and
field notes from previous studies of participant interaction
with the installations (see the following papers for detailed

descriptions of methodologies for each of these studies: [55,
54, 53]; installations in which formal research studies were
conducted are marked with an asterisk in Table 1); and video
and images of different iterations of the designed artifacts.

Some questions we considered when reflecting on our de-
sign practice and developing the design principles outlined
in the remainder of this paper are listed here: How did the
technical/physical/experience design change over time? What
aspects of the design worked well in public settings? What
aspects failed or led to unexpected challenges? Was there
anything surprising about the ways in which participants in-
teracted in installations? Did participants collaborate with
each other or with the AI agent(s) in our designed systems?
Did our designed artifacts facilitate creative interaction? If
so, which aspects of the installations contributed most ef-
fectively to the creative interaction? How did participants
make sense of the AI system(s) they were interacting with?
What feedback/advice did we receive from our research part-
ners/collaborators and participants? Which aspects of our
development, research design, and evaluation processes were
successful and which aspects needed improvement? Were any
of our observations supported by the existing literature?

DESIGN PRINCIPLES
This section presents a set of design principles we have de-
rived from reflecting on our experiences installing co-creative
AI installations in a variety of public spaces. These design
principles are broken down into three overarching categories:
1) technology design; 2) interaction design; and 3) research
design. Within each of these categories, we further organize
the design principles in sub-categories, which are visualized
in Figure 4 and described in detail in the remainder of this
section.

Technology Design
We first explore aspects of technical design that can contribute
to the successful installation of co-creative AI in a public space,
including issues relating to the maintenance and adaptability
of the system and cognitive capabilities of the AI agent that
contribute to the participant experience.

Maintenance
DP1 (Modularity): The software architecture of the system
should be adaptable and modular, enabling easy replacement
of components that can be quickly and reliably modified based



Project Date Event/Location Users Data Collected Design Principles
LuminAI 2013 The Window Project, Atlanta* 50 1, 2, 3, 9, 10, 11, 12
LuminAI 2014 The Art + Science Museum, Singapore 150 1, 2, 3, 9, 10, 11, 12
LuminAI 2015 Creativity and Cognition, Glasgow 35 1, 2, 3, 9, 10, 11, 12
LuminAI 2016 Field Experiment, Atlanta* 100 Video, interviews 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 16
LuminAI 2017 ACC Creativity & Innovation Festival, D.C. 300 2, 3, 4, 6, 7, 8, 11, 16
LuminAI 2017 Children’s Museum of Pittsburgh* 150 Video 1, 2„ 4, 6, 7, 8, 11, 12, 13, 14, 15, 16
LuminAI 2018 CODAME Art+Tech Festival, SF 200 5, 9, 10, 11, 15, 16
RIC 2018 TechRec, Atlanta* 120 Surveys, interviews 3, 4, 6, 8, 9, 10, 11, 13, 16, 17
RIC 2018 The Biltmore, Atlanta* 75 Interviews 3, 4, 5, 6, 8, 9, 10, 11, 13, 16, 17
SH 2017 Clough Art Crawl, Atlanta 75 11
SH 2017 Children’s Museum of Pittsburgh* 165 Video 1, 2, 7, 8, 11, 12, 13, 14, 15, 16, 17
SH 2019 ACC Creativity & Innovation Festival, D.C. 30 1, 9, 11
SoS 2017 Eyedrum Art and Music Gallery, Atlanta 20 8, 9, 11, 14

Table 1: Installation summary, chronologically by project. Abbreviations: the Robot Improv Circus (RIC), Sound Happening (SH),
the Shape of Story (SoS). Informal observations were noted at all installations, even when other data was not collected. * indicates
that a formal research study was conducted. All user counts are estimated.

Figure 2: Design principles summary chart

on the installation setting/needs. Designing for modularity
makes the need to customize exhibits for different physical,
creative or technical venue constraints (a need identified in
[68] and our own work) much easier. For example, LuminAI
has been used for dance performances as well as installations,
engaging both adults and children depending on the venue.
Each of these settings has necessitated different technical ca-
pabilities, and a modular code base enables rapid adaptation,
such as the ability to quickly swap out the Kinect for a more
precise MoCap suit, rapidly change the look-and-feel of the
avatar and its surroundings, or change the movement theory
the agent uses to reason.

DP2 (Non-Expert Installation Maintainability): AI systems
for public spaces should be developed such that non-experts
like museum staff members can easily run/restart the software
and modify certain aspects of agent decision making. The
installation should also be accompanied by good documenta-
tion. When exhibiting interactive installations there are several
options for reacting to failure modes or unexpected/dynamic
changes in the installation context. One option is to attempt
to automatically monitor the performance of an installation
for undesirable changes in behavior–such as reduced agent

reactivity to participant inputs–in order to reboot the agent
or run troubleshooting scripts. However, as we discovered in
late 2013 running LuminAI for over two weeks projected on
a storefront, where the public could interact with the virtual
agent as they walked past, attempting to predict all the differ-
ent failure modes and continuously monitoring the system for
all of them proved to be resource-prohibitive both in system
resources and developer time.

Remote human technical support can be provided for interac-
tive installations as an alternative to automatic performance
monitoring (as we did for LuminAI in Glasgow in 2015). This
is a solution that can potentially work well for large research
teams or creative agencies that can afford to offer dedicated
technical support services since a technical expert can address
installation issues in a timely manner without disclosing in-
tellectual property. However, remote technical support can
be particularly challenging for research groups that operate
under constrained resources and have to prioritize other as-
pects of the research process over post-installation technical
support. The need for coordination between technical experts
and venue staff across time zones to ensure that the remote
installation is accessible, connected to the internet, and any
fixes are tested can also be challenging.

While exhibiting both LuminAI and Sound Happening at the
Children’s Museum of Pittsburgh in 2017, we realized that if
we wanted to install our projects as permanent exhibits, a prac-
tical solution to handling installation failure modes was to en-
sure that on-the-floor staff members could easily run/restart the
project and make minor adjustments to it as needed through-
out the day. Documentation and built-in tools that allow non-
experts to reboot the project, troubleshoot errors, and make
certain customizations (e.g. adjust agent decision-making pa-
rameters or swap out sound samples) can serve as a practical
solution to this problem.

Agent Cognition
DP3 (Lifelong Learning): Co-creative AI agents that learn
from collaborators over the course of their run-time should
be able to process their growing knowledge/experience base



without slowing down over time. A co-creative AI agent re-
quires the ability to access and learn from a large dataset or
knowledge-base about the world and experiences within it
in order to be able to match the breadth and depth of cre-
ativity that people offer the agent and expect to receive in
return. Many embodied creative domains like dance, pretend
play, and theater are notable for their lack of large-scale, di-
verse, annotated datasets, since embodied knowledge or data
is time-consuming and expensive to collect. Agents capable of
lifelong learning (c.f. [77]) can remedy this problem since they
can learn interactively from the human participants themselves.
Increasing database size can be a concern with installations
in public settings, particularly if only the local computer’s
finite memory capacity is used. Cloud storage provides an
alternative to finite local storage but is dependent on reliable
high-speed network bandwidth which is not present in many
public spaces.

A larger problem than finite storage space for a growing
knowledge-base is that of needing to efficiently search and
retrieve knowledge or data from the knowledge-base [87]. The
literature on case-based reasoning, lifelong machine learning,
and interactive learning present some strategies that can facili-
tate searching a growing database without sacrificing speed.
One such strategy is to forget older, less useful, less-frequently-
used, or bad data [37]. Unfortunately, this can lead to missing
data in learned patterns without exacting a pattern management
or correction overhead. Abstraction can be used to generalize
data points into representative prototypes that can be compared
against in lieu of individual data points. However, this can also
lead to challenges maintaining learned patterns in the data if
the prototypes change over time due to lifelong learning. Cer-
tain search strategies are particularly well-suited for searching
large knowledge-bases. Branch and bound search [50] can be
used to aggressively prune the agent’s search space as it looks
for a suitable solution. Alternatively, a stochastic satisficing
search can be conducted until a data point that is “just good
enough” is found by the agent or time expires [39].

DP 4 (Agent Self-Evaluation): Co-creative AI agents that
learn from collaborators and generate creative offers should
be able to evaluate and distinguish between “good” and “bad”
percepts and actions. Distinguishing between percepts based
on quality enables the agent to both improve the quality of
its responses and save storage space for higher-quality data to
learn from, making lifelong learning more feasible. This is
especially important in public spaces where non-experts may
provide the agent with a lot of low-quality or repetitive data.
Some obviously “bad” data can be avoided by minimizing
opportunities for undesirable interactions. For instance, in
LuminAI, we disable detection of finger movement to eliminate
the possibility of recording lewd gestures, and we limit the size
and setup of the interaction space so participants cannot sit in
front of the installation (thereby teaching the agent how to sit
instead of dance). Agents can also use heuristics and function
approximation to evaluate to what degree new data points are
novel, unexpected, or high quality (for a given definition of
quality) (c.f. [46]). These evaluative models could potentially
be trained on or guided by feedback from participants for
personalization or corrected by experts (e.g. [16]).

Computational models for evaluating the novelty, unexpected-
ness, quality, or aesthetics of an agent’s potential responses
help the agent to explicitly select responses with a specific
degree of those qualities during a collaboration, instead of
relying purely on tacit procedural knowledge to implicitly at-
tempt this task [85, 84]. This is particularly helpful within
open-ended co-creative AI installations where there is not a
single clear goal, objective function, or other reward function
for which to optimize the agent’s behavior. For example, in
the Robot Improv Circus [39], agent self-evaluation is used
to explicitly consider whether a potential response fits a cre-
ative arc that the agent is trying to follow over the course
of the improvisation. This also allows the agent to display
feedback to human participants about what degree of novelty,
unexpectedness, and quality it perceived for their input ac-
tions. Possessing the capability to computationally evaluate
the novelty, unexpectedness, and quality of responses thus
provides the agent with a vocabulary for dialogue with the
human participant about the ongoing co-creative partnership
regardless of the accuracy of those evaluative models.

While there are numerous computational models for evaluat-
ing novelty, unexpectedness, and quality (c.f. [46]), designers
of co-creative experiences should consider the following con-
straints when choosing a specific set of models: the perspective
from which the model performs the evaluation (agent, human,
or audience), the dynamism (i.e. change over time) of the
model as the agent’s experience increases, the role of feed-
back in the model, and expertise of the agent relative to its
collaborator (c.f. [39]).

DP 5 (Explainability): Consider making AI systems “explain-
able” by making their decision-making process transparent,
incorporating supplementary interactions to help participants
understand the inner-workings of the agent, and consider-
ing how interface design plays a role in understandability.
Providing access to AI systems in public spaces is one step
towards promoting widespread AI literacy, but access does
not necessarily lead to increased understanding. For example,
in previous studies of LuminAI in public spaces, many partic-
ipants vastly over or under-estimated the capabilities of the
AI agent they were interacting with, and some did not even
understand that they were engaging with AI [38, 55]–a finding
that is consistent with prior research on human-AI interaction
[88]. How can we claim that the human and AI are co-creating
if the human participant does not have an accurate theory of
mind representing how the agent works?

We have begun to investigate how to make the agents in our
projects more “explainable”, but we are still in the early stages
of this aspect of our research and much remains for future
work. Some strategies that we have tried draw on research
in explainable AI (see Related Work). We have explored the
use of short text snippets in both LuminAI and the Robot
Improv Circus as a way of communicating aspects of agent
reasoning that are not otherwise apparent. For instance, in
earlier versions of LuminAI, the agent simply waved at the
participant to initiate an interaction. Now, text displayed above
the agent says “Will you teach me how to dance, human?”.
Informally, we have observed that many more participants



verbally recognize that the agent is able to learn from them
when the text prompt is visible.

Research has shown that the specific framing of an explanation
also impacts the perceived creativity of an act [9]. For example,
a technical explanation stating that a response was selected
because it was “15% more novel than the other responses
in the decision space” would be perceived as being more
creative if it were to be re-formulated into the sentence, “I
was really curious about this action that I hadn’t tried before
and wanted to try it out to see if it worked in this situation.” A
notable component of the explanation is some level of fictitious
intentionality and agency. We have observed this effect in our
own work–placing speech bubbles around agent statements
in the Robot Improv Circus caused participants to perceive
intentionality, stating that they thought the agent was trying to
do “something specific”.

Finally, we have found that other factors (beyond text explana-
tions) can also play a role in participant interpretations of the
system. For instance, in one version of LuminAI, we found that
the agent visualization (a cloud of moving fireflies) was aes-
thetically pleasing but obscured some of the agent’s motions
and made it difficult for participants to understand what was
going on [55]. We later transitioned to using a more humanoid
avatar for the dancer.

DP 6 (Creative Autonomy): Allow for modulating the AI
agent’s creative autonomy. Generally, we have found that the
level of creative autonomy that is appropriate for co-creative
AI agents is heavily dependent on context. Human collabora-
tors tend to want more control over the behavior and actions
of co-creative AI when they are using the AI as a performance
technology or creativity support tool [15, 72]. For installa-
tions or exhibits designed for non-expert audiences, it can be
beneficial to give agents more creative autonomy so that they
can provide non-experts with scaffolding for the co-creative
task and better support the creative collaboration [15]. How-
ever, even with novices, we have found that it is important for
people to see how their actions influence the co-creative pro-
cess, as perceived control plays an important role in helping
people to achieve creative “flow” [3, 59]. Our investigation
of leader-follower roles [90] for the agent within the Lumi-
nAI installation showed that there was a qualitative difference
in participant experiences between an agent that preferred to
follow most of the time and one that would actively switch be-
tween leading and following. The novice participants seemed
to prefer the agent that followed their actions more. Others
have also found that humans dislike when agents take the lead
in interactions [45], a phenomenon that could (at least in the
case of LuminAI) be explained by the chameleon effect [10].

One solution to the need for variable creative autonomy is
to design the agent architecture so that the degree of creative
autonomy can be modulated according to the context of the
collaboration. In the Robot Improv Circus, the agent archi-
tecture is explicitly driven to select actions according to a
designer-specified creative arc for the agent’s performance
over the course of the improvised performance. This provides
the experience designer with a level of creative control over the
degree of novelty, unexpectedness, and quality of the agent’s

actions during the co-creation. The respective creative arcs
for the agent could be varied to control the agent’s creative
autonomy based on its use as a performance technology or as
an installation in an informal learning context.

Interaction Design
This section explores design considerations related to how
people interact with co-creative agents in public spaces. We
discuss factors including group dynamics, agent models of
interaction, and resilience and usability.

Group Dynamics
DP 7 (Multiple Entry Points): Design for multiple entry points
and levels of engagement (even when you are targeting a
particular audience). Unlike in a controlled classroom or lab-
oratory environment, we cannot determine who is going to
interact with AI in public spaces. How do we make installa-
tions engaging and informative for people with different age
levels and levels of expertise? This is especially important
to consider when designing for family group interactions in
museums.

We design our installations with multiple entry points for par-
ticipants of different ages (as suggested in [78]). For instance,
in Sound Happening, even very young children can (and love
to) push around balls and hear the noise they make, but the
interaction potential is deep enough that some adults experi-
ment with making coordinated rhythms with the balls for long
periods of time [54]. In LuminAI, young children often just
enjoy dancing with their Kinect “shadows”, whereas older
children and adults recognize and take into account the agent’s
motions. In both projects, participants are able to creatively
express themselves in a variety of ways.

DP 8 (Social Interaction): Design agents that can interact
socially with humans and/or help to facilitate human-human
social interaction. As mentioned in Related Work, public
spaces are social spaces (75% of visitors to museums come in
groups [30]), and there is a relationship between learning and
social interaction [86, 49]. However, most co-creative AI are
designed for one-on-one interaction (e.g. [16, 56, 61, 51]), and
interactive museum exhibits involving technology have more
broadly been critiqued for discouraging social interaction [30].
Equipping agents with social intelligence–such as the ability
to take turns dynamically [90]–can help to make human-agent
social interaction more naturalistic.

Designers should also consider how installations can support
human collaboration (a quality that has repeatedly been identi-
fied as being an important component of public installations
[91, 33, 55]). Even something as simple as providing a way
for multiple group members to peripherally interact with an
exhibit at once (rather than just passively observing as audi-
ence members) can transform the nature of social interaction.
For example, in LuminAI, we display up to three people’s
Kinect “shadows” on the screen (even though the agent only
responded to the movements of the participant standing closest
to the screen). We saw a wide variety of social interactions as
a result of enabling the additional shadows, including a couple
salsa dancing, two friends coordinating a synchronized dance
performance, and a group of teenagers performing in a dance



circle. Similarly, in Sound Happening, having multiple balls
available to interact with led to the emergence of parent-child
joint play [54]. In the Robot Improv Circus, the audience
can watch someone interacting in VR through video portals
outside the circus tent and can provide feedback using their
voice and gestures to trigger in-game reward systems. This
led to several groups of friends encouraging each other to try
different actions with the props.

The physical design of the space can also contribute to promot-
ing social interaction–in LuminAI, we found that a partially
enclosed dome provided a semi-private dance floor where
people felt more comfortable interacting than in front of a
two-dimensional screen [55]. In Shape of Story, we explicitly
designed an enclosed storytelling space to encourage partic-
ipants to share stories with each other (and the system) that
they may not feel comfortable divulging to a large audience.

Agent Models of Interaction
DP 9 (Narrative Structure): Consider the narrative trajectory
of the participant’s full experience before, during, and after
interaction with the installation. While there are many ways
for participants to interact with public installations and there is
no one “right way”, providing some narrative structure to the
experience can encourage participants to engage more deeply
[11, 4, 78]. Designers should consider the following questions:

What does the initial interaction look like? A variety of lit-
erature has pointed to the importance of “attractors” or “ad-
vertisements” that invite participants to interact with public
installations [91, 4, 52, 33]. In our work, we have experi-
mented with agent actions that welcome participants into the
installation (e.g. a waving or dancing agent in LuminAI), initial
text prompts that provide contextual or welcoming informa-
tion (LuminAI, the Robot Improv Circus), and pre-interaction
demonstrations or performances to entice passerby to join in
(LuminAI, Sound Happening). We have also explored how
designing physical entrance areas and facilitated “welcoming”
stages [52] can help prepare participants for interaction (Shape
of Story [53]).

Is there a narrative structure to the collaborative interaction?
The structure of the body of the interaction is also important to
consider. The LuminAI agent is capable of human-agent turn-
taking–this social leading/following behavior provides some
structure to the body of the interaction [90]. We have also
started to incorporate the beginnings of narrative sequencing
into co-creative agent “turns”–for instance, having an agent
walk to a prop and pick it up prior to playing a generated
action in the Robot Improv Circus, or playing a sequence of
related gestures that build on each other in LuminAI. We have
also experimented with text prompts and signs that encourage
participants to try different actions (a strategy also employed
by [36, 76]). Facilitated guidance can also serve as a way
of creating a narrative structure. For example, in Shape of
Story, a facilitator guided participants through the experience
of telling a collaborative story together [53].

How does the interaction end? Everyone leaves an interaction
eventually, and the way that an interaction ends can play a
role in what the participant takes away from the experience.

“Designing for dropout” [91] can encourage personal reflection
and social sharing of experiences at the end of an interaction
[52, 4, 44]. While some of our projects involve very simple
conclusions (such as an agent waving goodbye), in others we
have explored how to facilitate reflection. For example, in
Shape of Story, we encouraged participants leaving the exhibit
to reflect on the meaning of the story that was visualized by
looking at example stories posted in the hallway outside [53].

DP 10 (Improvisation): Equipping agents with knowledge of
how to improvise, or creatively respond to novel situations,
can help to make the agent more socially interactive (DP 8),
naturalistic (DP 11), and “tough” (DP 12). In-the-wild in-
teractions with co-creative agents can often yield unexpected
situations and novel inputs. One way to deal with this, es-
pecially in the context of co-creative interaction, is utilizing
improvisational techniques. A variety of work has studied how
humans improvise together in different domains like jazz [73,
66, 31, 5], theater [74, 56], and dance [83, 69, 79]. Many of our
co-creative AI projects have used improvisational techniques
to improve the quality of interaction and creative response
[38, 39, 56]. For instance, trading fours/trading eights is a
technique used in jazz improvisation in which musicians al-
ternate playing four or eight bars of music, “continu[ing] in
the spirit or mood established by the prior players, respond-
ing to, and building on, the prior musician’s eight bars” [74].
We use a similar technique in LuminAI, in which the agent,
upon recognizing a gesture, responds with a series of three
gestures–one that mimics the human gesture, one that trans-
forms it in some way, and one novel gesture that is similar to
the observed gesture in some way (e.g. rhythm, tempo, size).
In the Robot Improv Circus as well, the agent uses a similar
set of strategies adapted from human improvisational practice
in order to prioritize its search of potential responses to follow
a particular creative arc over the course of the performance.

Resilience and Usability
DP 11 (“Intuitive” Interaction): Design AI agents that can
interact in naturalistic, embodied, and/or culturally recogniz-
able ways with people. People quickly abandon exhibits that
are difficult to interact with in public spaces [1, 78]. Interac-
tion modalities that require high computational literacy can
also discourage certain groups (e.g. the elderly) from partici-
pating [34]. Designing to mitigate these issues is referred to
in the literature as designing for apprehendability [1, 33] or
responsiveness [78] (see Related Work).

All of our installations involving co-creative AI employ em-
bodied or naturalistic interaction methods. We use a variety
of technology to achieve this, including the Microsoft Kinect
depth sensor (LuminAI), the HTC Vive room-scale VR system
(the Robot Improv Circus), microphones and voice recogni-
tion (Shape of Story), and webcam color tracking with Max
MSP (Sound Happening). Cultural understanding of socially
familiar activities such as ball play can also make interaction
easier for participants [33, 78], a technique that we leveraged
in Sound Happening to encourage adult-child play [54].

DP 12 (“Toughness”): Design AI systems and their associ-
ated installations for “toughness”; in other words, design AI
installations such that they can withstand long-term heavy



use by many people. In public spaces, AI installations may
be interacted with over long periods of time, in unexpected
ways, and possibly in a rough manner. While many technol-
ogy developers strive to create robust systems, the level of
“toughness” needed in public spaces is easy to underestimate
and can involve factors that are not often considered in adult-
only research environments (e.g. avoiding choking hazards,
preventing theft of installation materials, preparing the installa-
tion for rough interactions such as throwing, kicking, hitting).
In addition to designing for robustness and safety (see Related
Work), toughness means:

The installation does not break when interacted with over long
periods of time (see DP 3). In addition to technical imple-
mentation and physical robustness, this includes considering
interference issues related to the environment. As noted in Re-
lated Work, Jensen et al. and Bengler et al. both discuss noise
and light interference in public spaces, issues that we have
also dealt with in our projects that involve projection and/or
sound [40, 3]. Other contextual issues to consider include
WiFi connectivity/dependability, sensor interference, and the
amount and type of foot traffic that your installation location
receives. Designers (in collaboration with museum partners
or artists) should also take into consideration what level of
maintenance is required to keep the installation running (see
DP 2).

Designers should try to consider all of the possible (ideal and
less than ideal) ways someone might interact with the exhibit
and design such that none of those “break” the exhibit. This
necessitates an iterative design research process [24], as it is
impossible to foresee all possible use cases. Through iterative
testing that we conducted as part of the Children’s Museum
of Pittsburgh’s “Tough Art” program, we identified a need for
and built a box to protect the Kinect from prying fingers in
LuminAI and devised a solution to contain the balls within
the interaction space for Sound Happening. Transportability,
space considerations, and ease of set-up/take-down should
also be considered during the design process. We found that
installing LuminAI in a large geodesic dome encouraged social
interaction [55], but the dome was difficult to transport/set up
and too large to fit in most exhibit spaces. We are currently
exploring a solution involving more mobile and compact scaf-
folding. Finally, designers should consider how social norms
and object affordances play into the durability of the installa-
tion. For instance, in Sound Happening, we found that bouncy
balls were quickly weaponized by kids who threw them at
each other and the walls. When replaced with balloons, which
are not able to bounce or be thrown far, theft became an issue
as balloons were perceived as being “free”. Beach balls ended
up being a workable final solution [54].

Research Design
This section explores how designing AI for public spaces
relates to research agendas and goals. We discuss issues in-
cluding challenges associated with engaging with the public
and testing/evaluating exhibits in-the-wild.

Engaging with the Public
DP 13 (Informed Consent): It can be difficult to obtain in-
formed consent to study (and in particular, video record) par-

ticipants’ interactions with AI installations in public spaces.
Beyond just getting IRB approval, designers should more
deeply examine whether participants (especially children)
know that they are participating in research when interacting
with public exhibits and what that participation entails. Visi-
tors should be reminded of consent as they enter the specific
exhibit (not just upon entering an event or venue). This is
often achieved via signage, but it is important to recognize
the role that sign size and placement plays in determining
whether participants realize they are participating in research.
We have found that large signs placed at all entry points to an
installation (and inside of the installation, if applicable) are
most effective, a finding that is supported by other museum
research [27].

The age of participants and the context of the venue can also
affect one’s ability to obtain informed consent–young chil-
dren who are not being supervised might run into the exhibit
without their parents. We found obtaining informed consent
to be more straightforward at museums that were less free-
play oriented for this reason. In addition, it is important to
consider that school groups and friends often visit museums
together, meaning that it cannot be assumed that all children’s
parents are present. Access-controlled spaces (with a facilita-
tor present to enforce age limits and parental consent) may be
necessary in some scenarios. In museum spaces, designated
“research” areas or “living laboratories” [63] where researchers
often study new installations can help make the line between
“exhibit” and “research exhibit” clearer for the visitor.

DP 14 (Facilitation): Designers should consider different facil-
itation needs for different contexts. Some facilitation can help
push interactions to “the next level”, but heavy-handed facili-
tation can disrupt the exploratory nature of co-creative interac-
tion. In informal learning spaces, facilitators that ask questions
that promote further exploration can promote participant learn-
ing and engagement, but heavy-handed explanations might
actually discourage further engagement. Recent research on
facilitation suggests that it may be more productive for facil-
itators to make provocative comments or questions intended
to push participants to the next level of learning/engagement
(e.g. “Do you think you can teach the agent a dance move?”;
“I wonder which ball controls which noise.”) as opposed to
approaching participants and offering extensive explanations
or critiques [29].

Facilitation also plays an important role in art spaces. Loke
and Khut [52] discuss how facilitators can play an important
role in guiding participants through more intimate artistic ex-
periences in public spaces. We explored this approach in our
work with Shape of Story, where facilitators led participants
through the entire interaction. Researchers also need to con-
sider how the presence of facilitators relates to their research
questions and evaluation instruments. If researchers are try-
ing to measure the ability of the exhibit to foster in-the-wild
learning or engagement, facilitation might skew results. Other
research questions may be more compatible with facilitation.

DP 15 (Balancing “Toughness” and Research Goals): Re-
searchers should recognize the “tough” nature of public ex-
hibits. It can be difficult to balance the need for “tough” ex-



hibits (DP 12) with research goals. There is a conflict between
quickly iterating to test out new research ideas vs. taking the
time to ensure robustness, modularity, good documentation,
and easy non-expert maintainability (see DP 2). This can
slow down the research process but is necessary for long-term
public installation and work with partners who are concerned
with durability. As a research community, it would be helpful
to place value on the production of durable public installa-
tions involving co-creative AI (rather than only valuing novel
prototypes of AI systems). Embedded in these artifacts is
knowledge about designing for public interaction [24]. In
addition, such artifacts allow us to explore novel research
questions with a wider community of study participants.

Testing and Evaluation In-the-Wild
DP 16 (Transitioning Tools and Methods): Rapid prototyp-
ing (and the tools/research methods associated with it) is
useful in the beginning/testing stages of a project, but for re-
searchers concerned with developing “tough” installations,
it is important to transition from prototyping platforms and
research methods to industry-standard platforms and in-the-
wild studies. We create initial builds of many of our projects
using Processing (a great tool for rapid prototyping). How-
ever, Processing is difficult to use for creating large-scale
software projects and industry standard game engines/editors
like Unity3D provide better installation performance in the
long-term. Yang points out that new tools developed specif-
ically for designers and artists looking to incorporate AI in
their work may aid in the design process, especially since rapid
prototyping can be challenging when working with ML [92].
Examples of such tools include Fiebrink et al.’s Wekinator
tool, designed to enable artists to use ML to control real-time
performance [21], and van Allen’s prototyping platform that
allows designers to simulate AI devices with physical compo-
nents prior to transitioning to an actual hardware prototype
[82].

Transitioning from more structured workshop studies to in-
the-wild observations is also critical. Findings from controlled
studies often do not transfer to “the wild” [71], and museum
workshops held during prototyping stages may not fully illu-
minate the social interactions that occur with an exhibit on-the-
floor [30]. It is therefore important to test project iterations at
various stages in-the-wild.

DP 17 (Evaluation and Assessment): Designers of co-creative
AI should consider how to evaluate their installations in order
to assess the degree to which they facilitate learning/creative
expression, recognizing that new exploring new modes of
evaluation and assessment may be necessary. Evaluating co-
creative experiences in public spaces is difficult–what makes
an interaction a “good” one? It is challenging to assess the
degree to which an installation facilitates learning/meaning-
making, creativity, and/or collaboration. Recent work has ex-
plored how to quantify co-creative interactions in order to bet-
ter understand the quality of collaboration and sense-making
[14]. There is also a body of research that explores how to
evaluate the creative products generated by AI systems (see
Related Work). We are currently drawing on literature from
museum studies and studies of co-creative systems we have

developed in order to better understand learning that occurs in
co-creative interactions, from physical, social, emotional, and
intellectual perspectives.

FUTURE WORK
A number of the design principles we listed identify areas for
our current and future research. We plan on building on the
LuminAI system to communicate some of the “big ideas” of
AI [80], focusing on incorporating affordances that support
participant learning (DP 5) and fostering social interaction (DP
8) in order to support family group learning. Within the Robot
Improv Circus installation, we also plan on further exploring
how to improve agent explainability (DP 5) to better support
informal learning for the audience and creative autonomy
(DP 6) to better support use as a performance technology.
Finally, we are exploring new modes of evaluating co-creative
experiences through qualitative analysis of our systems in use
in-the-wild.

In addition, the design principles presented in this paper are
intended for use when designing and developing AI for public
spaces. However, for the most part they do not address the
early idea-development stages of the design process. Recent
research has called for designers to consider ML and AI more
broadly as “design materials”, or materials that can be used to
develop new product forms [92]. We suggest that co-creative
AI is particularly well-suited as a material for designing public
installations, as the social and open-ended, improvisational
nature of interaction present in most co-creative systems com-
plements the free-choice, group style of interaction in public
spaces. When generating ideas for novel installations involv-
ing co-creative AI, we draw inspiration from both the strengths
of co-creative AI as a design material and the design principles
presented in this paper, while focusing on how the co-creative
AI can facilitate experiences that elicit creative exploration,
surprise, awe, joy, play, and social and embodied interaction.
We hope to further explore co-creative AI as a design material
in future work.

CONCLUSION
In this paper, we have contributed a practice-based understand-
ing of the challenges that come with designing co-creative AI
for public spaces, and an initial look at some of the solutions
that we have explored. This contribution can be valuable to
other co-creativity researchers looking to share their work with
the public as well as museum exhibitors and artists looking at
how they might incorporate AI in museums and gallery spaces.
We encourage other researchers to not only consider these
design principles when developing co-creative AI for public
spaces, but also to consider exploring some of the identified
gaps in existing literature as areas for future research.
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