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The world is a slightly better place for having improvisation in it than it was before.

There’s something about it that says something positive about the human spirit, that a

bunch of people can get together and by following a few simple traffic rules can create art

and can entertain an audience and can thrill and exalt each other.

Del Close

The rules of improvisation apply beautifully to life. Never say no - you have to be

interested to be interesting, and your job is to support your partners.

Scott Adsit



To Bridget, my deepest source of strength and hope.
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SUMMARY

Improvisation is an essential skill for co-creative agents to develop for successful per-

formance despite resource constraints, time pressure, open-ended problems, and ill-defined

goals. An important subset of improvisation that has diverse applications is embodied nar-

rative improvisation, i.e., collaborative improvisation of narratives with other agents using

the various modalities of its body situated within a virtual or physical environment. Un-

constrained human-computer embodied narrative improvisation is a challenging problem

since it requires the incorporation of many cognitive faculties including narrative intel-

ligence (the ability to tell and understand stories), social cognition (reasoning about the

goals, plans, desires of other beings), performance of linguistic/non-linguistic action (the

physical ability to enact a set of actions), and commonsense reasoning (reasoning about

how the world works at a naive level).

Unconstrained embodied narrative improvisation is too complex to address at present,

as mentioned in the preceding paragraph. Therefore, this dissertation aims to explore the

initial steps in a path toward improvisational agents that can eventually perform uncon-

strained embodied narrative improvisation with people. I focus on improvisation within an

object-based gestural proto-narrative problem domain in this dissertation that falls under

the set of problem domains that I collectively refer to as movement improv domains due to

their focus on gestural and environmental interaction. My research addresses the improvi-

sational action selection problem, which is a crucial challenge to creating improvisational

agents in movement improv domains.

I study the improvisational action selection problem (the challenge of performing action

selection from an open-ended action space with an ill-defined goal space in near real-time

based on the agent’s knowledge and the improvisational context, in order to avoid incoher-

ent behavior, decision paralysis, and unexpressive responses) in this dissertation and how

to address it within the Robot Improv Circus interactive virtual reality installation and the
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CARNIVAL agent architecture. In this domain, object-based gestural proto-narrative im-

provisation takes place between non-expert human and virtual characters through the Props

game. The CARNIVAL agent architecture uses affordance-based action variant genera-

tion, improvisational response strategies, and computational evaluation of creativity of

perceived or generated actions to perform creative arc negotiation as a form of intrinsically

motivated action selection in order to address the improvisational action selection problem.

Creative arc negotiation is the process of selecting actions over time to best follow a given

creative arc, i.e. a continuous target trajectory for generated responses to follow through

an agent’s creative space (the space of actions with different degrees of novelty, surprise,

and value).

My dissertation has the thesis statement, “embodied agents that address the improvi-

sational action selection problem using ‘creative arc negotiation’ increase perceptions of

enjoyment, agent creativity, and coherence in both observers and participants while per-

forming movement improv with non-experts.” Through the evaluation performed in this

dissertation, it was found that this thesis statement is valid to different extents as follows.

It is valid to conclusively state that embodied agents addressing the improvisational action

selection problem using creative arc negotiation can perform movement improv with non-

experts so that perceptions of agent creativity and coherence increase for both participants

and audience members, but that perceptions of enjoyment only increase conclusively for

observers. More study and data is required to show a conclusive increase in perceptions of

enjoyment for participants of the installation.

The contributions of my research in this dissertation are as follows.

• A model of affordance-based action variant generation for the parameterized gener-

ation of action variants based on a given objects physical attributes.

• A formalized set of improvisational reasoning strategies for guiding an agents action

space search based on previous experience and the current improvisational context.

xvii



• Computational models for evaluating the creativity of perceived and generated action

variants in terms of their novelty, unexpectedness (as a measure of surprise), and

quality (as a measure of value).

• A model of creative arc negotiation for improvisational action selection while per-

forming movement improv with non-experts that increases both participant and ob-

server perceptions of enjoyment, agent creativity, and coherence.

• A publicly disseminated and validated interactive installation where embodied agents

can perform movement improv with non-experts.

xviii



CHAPTER 1

INTRODUCTION

Improvisation with human collaborators is an essential skill for intelligent agents to de-

velop in order to act in realistically large-scale problem domains where cognitive, as well

as physical resource limitations, severe time constraints, open-ended action spaces, and

ill-defined goal spaces, are characteristic. For convenience, I have coined the term em-

bodied narrative improvisation [1] to refer to an important set of creative domains within

the space of improvisational domains that is at the intersection of embodied collabora-

tive creativity (co-creativity) and narrative improvisation (in a broadly applicable sense).

Successful human-computer embodied narrative improvisation would have valuable appli-

cations within diverse fields such as human-robot (or human-agent) interaction, immersive

scenario-based training, expressive arts or play therapies, virtual reality (VR) games or

entertainment, and using performing arts to encourage broader participation in STEM (sci-

ence, technology, engineering, and mathematics). Embodied narrative improvisation, as I

defined it in [1], involves an agent co-constructing and enacting narratives with other agents

using the various interaction modalities, constraints, and affordances of its body situated

within a virtual or physical environment. For example, within a VR game that enables play-

ers to interact with the virtual world and each other through naturalistic embodied interac-

tion, non-player characters (NPCs) could co-construct the game’s narrative with players

through their embodied actions instead of being restricted to following scripted sequences

of canned animations and pre-recorded behaviors.

The problem of human-computer embodied narrative improvisation is too complex and

challenging to address in its unconstrained form because it requires agents to possess many

complex reasoning capabilities such as narrative intelligence (the ability to tell and under-

stand narratives, see section 1.2), social cognition (the ability to reason about other agents’

1



mental states and how that interacts with one’s mental state), performance of linguistic and

non-linguistic action, as well as many other reasoning faculties, interaction capabilities,

knowledge, and experience. Therefore, this dissertation aims to form the first exploratory

steps towards someday creating improvisational agents that can perform unconstrained em-

bodied narrative improvisation with people. In order to achieve this, I have simplified the

scope of my research in several ways. Firstly, due to the relative abundance of research

in speech-based and textual narrative domains, I focus on studying improvisation within

a problem domain where the primary interaction modalities are object-based and gestural

interaction. I refer to this set of simplified problem domains as movement improv domains

(see section 1.2) throughout this dissertation in order to emphasize that they primarily in-

volve full-body gesture and object-based interactions. Secondly, I restrict the scope of the

research in this dissertation to addressing the improvisational action selection problem (see

section 1.2.1), which is a key challenge for creating improvisational agents for movement

improv that prior research in improvised dance [2] and pretend play [3] had highlighted.

Finally, as a tangible step closer to unconstrained embodied narrative compared to my prior

work in human-computer improvised dance [2], in this dissertation I choose to study the

improvisational action selection problem within a problem domain that represents an in-

crease both in the complexity of the improvised embodied interactions and in the degree of

semantic structure required for successful improvisation.

The remainder of this chapter starts by introducing the terms and concepts used in

this research before describing the improvisational action selection problem. The chapter

then discusses the domain chosen to study the improvisational action selection problem

as well as the techniques used to create improvisational agents within that domain. The

chapter then presents my thesis statement and the research questions guiding the formal

evaluation of the claims in my thesis statement. This chapter finally concludes by detailing

the contributions of this research.
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1.1 Creativity and Improvisation

This section formally introduces the concepts of creativity, co-creativity, and improvisa-

tion as they are used in this dissertation. The definitions for these terms are required to

contextualize the main problem addressed through this research (see section 1.2.1) and

the computational techniques used to address it (see section 1.4). More detail about these

concepts and relevant related research can also be seen in sections 2.1 and 2.4.

Formal research into the phenomenon of creativity from both humanistic and computa-

tional perspectives have has led to a scientific understanding of human creativity including

recommendations for improving creativity [4], better supporting creative practice [5], and

scaling up creative impact [6]. Creativity research has also resulted in several definitions

of creativity as a phenomenon. Newell, Shaw, and Simon’s creative problem solving [7]

referred to elements of creativity as novelty, value, rejection of previous assumptions, per-

sistence towards a goal, and the development of a problem specification itself. Boden’s

influential model [8] of creativity defined creativity as “the ability to come up with ideas

or artifacts that are new, surprising and valuable” (under various senses of the terms ‘nov-

elty’, ‘surprise’, and ‘value’). Colton’s creativity tripod [9] argued for creativity involving

skill, imagination, and an appreciation of a chosen creative medium. Colton, Charnley, and

Pease’s later FACE model [10], on the other hand, defined conceptual creativity in terms

of creative concept invention, expression of the concept as an artifact, aesthetic evaluation

of the artifact, and the framing of the artifact to an audience. Finally, Jordanous’ Stan-

dardized Procedure for Evaluating Creative Systems (SPECS) methodology [11] described

a three-part methodology for evaluating creativity that provided fourteen common criteria

that were commonly associated with defining creativity ranging from originality to domain

competence and value. More detail about how these definitions contribute to computational

models for evaluating creativity can be found in section 2.4. For this dissertation, Boden’s

[8] product-based definition of creativity (mentioned above) is adapted and operationalized
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for the current context in the following definitions along with component terms such as

novelty, surprise, unexpectedness, value, and quality.

Definition 1.1.1 (Novelty) The aggregated difference between a percept or artifact and

other comparable experiences or artifacts that an agent has already experienced.

Definition 1.1.2 (Unexpectedness) The degree that an experience or artifact deviates from

the agent’s expectation for that experience or artifact.

Definition 1.1.3 (Surprise) An affective reaction to an experience or artifact caused by

the violation of confidently held expectations about that experience or artifact proportional

to the degree of experienced unexpectedness.

Definition 1.1.4 (Quality) The standard of an experience or artifact in comparison to

other comparable experiences according to specific, predetermined criteria used for as-

sessment.

Definition 1.1.5 (Value) The usefulness and quality of an experience (or artifact) to the

creator(s), consumer(s), embedding society or culture, and the contexts for the creation,

consumption, and gatekeeping of that experience (or artifact).

Definition 1.1.6 (Creativity) The creativity of an artifact is the weighted aggregation of its

novelty, unexpectedness (as a measure of surprise), and quality (as a measure of value) as

experienced by an evaluating agent in relation to its past experiences, current expectations,

and quality criteria.

The computational creativity research community has traditionally focused on the au-

tonomous generation of creative artifacts [12], in addition to their contributions towards

modeling creativity. Recently, there has been a rising interest in collaborative creativity or

co-creativity between human and machine [13]. Co-creativity is defined in this work with

a process-based perspective as follows (see more about different kinds of perspectives in

section 2.4).
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Definition 1.1.7 (Co-creativity) The process by which two or more agents (human or com-

puter) collaborate within a creative domain in a variety of possible configurations and

collaborative roles to generate a creative artifact together.

Co-creative agents can assist, augment, direct, or otherwise relate to human creativity

by taking on a variety of roles in the creative collaboration. These roles can include creativ-

ity support tool [13], creative task worker [13], creative assistant [13], inspirational source

[13], nanny [14], coach [14], pen-pal [14], colleague [14], critic [15], task provider [16],

or instructor [16], task leader [16], task follower [16]. Newer co-creative agents can also

transition between different co-creative roles in the co-creative process depending on the

context over time (e.g. transitions between leader-follower roles in [17]).

Improvisation is a term that is used to refer to a broad spectrum of creative domains that

involve the production of creative outputs ‘in the moment’ to varying degrees. Berliner [18]

describes improvisation (in jazz) as “reworking pre-composed material and design in rela-

tion to unanticipated ideas conceived, shaped, and transformed under the special conditions

of performance, thereby adding unique features to every creation.” Pressing [19] describes

how the improvisational process proceeds with respect to a “formal schema or guiding im-

age” called the referent that serves as inspiration or constraining criteria throughout the

improvisational performance. According to Sawyer [20] the degree of guiding structure in

an improvised performance can vary drastically based on the performance domain, ranging

in complexity from improvisation that is “as basic as a performer’s elaboration or variation

of an existing framework a song, ritual prayer, or traditional story,” to those improvisational

performances where “the performers start without any advance framework and create the

entire work on stage.” However, across these two extremes of improvisational complexity,

the improvisational process highlights the impressive ability of a creative agent (human or

computer) to fluidly generate creative responses in near real-time within open-ended and

ill-defined problem domains.

Improvisational creativity necessarily operates using constrained cognitive and physical
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resources, under severe time constraints, over a potentially unbounded action space (i.e.,

an open-ended action space), and without a single (or small set of) well-defined goal(s)

to pursue at any given time (i.e., it has an ill-defined goal space). The improvisational

domains referred to or addressed in this dissertation are characteristically collaborative

(i.e. involving more than one improvising agent), open-ended (i.e. having a potentially

unbounded action space from which to select creative responses in near real-time), ill-

defined (i.e. lacking a clear set of well-specified goals to follow or objective functions to

optimize in order to select responses in near real-time), and performative (i.e. restricted to

creative domains where some set of agents is performing for an audience in near real-time).

Therefore, improvisation is defined within this work as follows.

Definition 1.1.8 (Improvisation) Improvisation is the process of collaboratively produc-

ing creative outputs in near real-time within open-ended, ill-defined creative performance

domains.

Improvisation has long been studied in human creative practice and creative process

[19, 21, 22, 23]. This has most often taken the form of observational studies of human

improvisers. Computational models of improvisational creativity have also been explored

for a small number of domains, including music [24], visual art [25], pretend play [3],

theater [26], and emergency response management [21].

Research in computational creativity, co-creativity, and improvisation have largely ig-

nored domains of embodied creativity such as dance, theater, mime, and pretend play [27]

(though notable exceptions exist). In addition to being artistically and creatively impor-

tant fields, it is a particularly opportune time to study embodied co-creativity with the easy

availability of cheap, high quality body sensing technology enabling reliable embodied in-

teraction and the mass-market adoption of VR technology highlighting the transformative

potential for embodied co-creativity in a wide range of extended reality (XR) applications.

This dissertation thus focuses on research into human-computer improvisation within do-

mains highlighting embodied co-creativity.
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1.2 Embodied Narrative Improvisation and Movement Improv

The human affinity for understanding the world and communicating ideas through narra-

tive is referred to as narrative intelligence (see [28, 29, 30]). As a central human faculty,

narrative has been defined in many ways according to various schools of thought over time.

Abbott [31] presents a minimal definition of narrative as, “the representation of an event or

a series of events.” Graesser, Hauft-Smith, Cohen, and Pyles [32] defines narrative as prose

that “delineates actions and events which causally unfold in time, e.g., stories and tales.”

Graesser, Singer, and Trabasso [33] add that narratives “involve people performing actions

in pursuit of goals, the occurrence of obstacles to goals, and emotional reactions to events.”

Lakoff and Johnson [34] detail the features that narratives commonly possess in their ‘Life

Is A Story’ metaphor, including participants (characters), parts (settings, episodes, states

etc.), stages (temporal sections of the story), linear sequences (temporal and/or causal rela-

tions between successive episodes and states), causation (causal relations between episodes

and states), and purpose (goals and plans). Following from these perspectives, narrative is

defined in this research using Prince’s [35] definition as follows.

Definition 1.2.1 (Narrative) The representation of at least two real or fictive events in a

time sequence, neither of which presupposes or entails the other.

Embodied narrative refers to the physical (or virtual) enactment of narrative grounded in

an agent’s embodied experience, constructed using its body within the physical (or virtual)

environment in which it is situated [36]. Some examples of embodied narrative include

reenacting a favorite movie, acting in the theater, playing certain virtual reality games, and

performing a dance interpreting a classic story. Disembodied narrative, on the other hand,

includes a text translation of the Epic of Gilgamesh in English or an autobiographical blog

post on the world wide web. Embodied narrative is defined in this work as follows.

Definition 1.2.2 (Embodied Narrative) A narrative that a physically (or virtually) em-

bodied agent constructs using the interaction modalities, constraints, and affordances of
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its physical (or virtual) body as well as interactions with its physical (or virtual) environ-

ment.

Embodied narrative improvisation encompasses a challenging class of improvisational

domains, such as long-form improvisational theater, live-action role-playing (LARP) games,

collaborative pretend play, and certain forms of improvisational dance. These activities in-

volve embodied narrative co-construction predominantly in real-time based on the current

improvisational context and the creative offers (opportunities for progressing the narrative)

being passed back and forth between improvisers. The complexity of the improvisational

task in a particular domain may be constrained by differing levels of structure arising from

the ‘rules’ or conventions of the domain. Embodied narrative improvisation is defined in

this work as follows.

Definition 1.2.3 (Embodied Narrative Improvisation) Embodied narrative co-construction

among multiple participants in near real-time by performing actions to advance the narra-

tive from an open-ended narrative action space and an ill-defined goal space.

The opportunity for embodied narrative improvisation to make a lasting impact has been

highlighted in recent years by the explosion of immersive VR for entertainment and indus-

trial applications. VR-focused applications, including VR games, productivity tools, and

training experiences, are a fast-growing segment of the digital entertainment [37], artistic

practice [38], as well as training and simulation industries [39, 40]. The embodied inter-

action in VR, such as walking and manipulating the virtual world using the body, strongly

supports a user’s ability to perform embodied narrative improvisation and adds to a user’s

immersion [41]. Users can physically mime flipping burgers [42] or scaling Mt. Everest

[43] to do so in-game. Naturalistic embodied interaction in VR, thus enforces the direct

correspondence between the movements performed by their body and the character’s ac-

tions in the virtual world increasing user presence [41].
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There is currently a jarring imbalance in the agency available to (and responsibility

placed on) the human collaborator in VR games and experiences at present. For example,

in the game Job Simulator [42], the user has extraordinary physical control of the world

using their body to flip burgers, stamp sales reports, and even play Minesweeper on a

computer. However, the other NPCs in the game are all floating computer heads with

disembodied hands that can float in predefined points and do the same actions the same

way each time. This is because a non-player character (NPC) in VR experiences is still

limited to using sets of pre-recorded animations (albeit cleverly blended in predetermined

ways) to move or act. In Job Simulator, the distinct lack of variation can be excused since

the other NPCs are presented as floating CRT monitors with disembodied hands, and their

robotic behavior is aesthetically appropriate. However, any VR game or experience that

aims to portray a behaviorally realistic (or behaviorally believable) human (or humanoid)

NPC needs to overcome this lack of character expressiveness and fully support open-ended

embodied interaction [44].

Open-world sandbox games in VR like [45, 46] or expressive interactive experiences

in embodied environments like [47, 48, 49] are usually solitary explorations of human cre-

ativity and expression or rely on human players to provide a sense of social gameplay. This

is because developing NPC AI for co-creativity and expression is vastly more complex than

doing so for task-oriented games with a fixed set of rules and clear rewards for following

them. The lack of clearly defined goals to perform at each point in these open-ended games

makes the experience of playing them more akin to an improvisational narrative than tra-

ditional narratives evolving from a fixed set of possible actions and ways that they can be

performed. Therefore, NPCs that could improvise in embodied environments could form

collaborative companions to players in open-world sandbox games and expressive interac-

tive experiences in embodied environments.

The grand challenge of creating a computational agent that can perform unconstrained

embodied narrative improvisation with people in a real-world creative domain would re-
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quire the agent to possess models of narrative intelligence, social cognition, common

sense reasoning, meta-communication, and many other cognitive faculties in addition to

vast amounts of knowledge about the creative domain and experience within it. Moving

along the path towards unconstrained human-agent embodied narrative improvisation, the

research in this dissertation continues from prior work on gestural proto-narrative (a se-

quence of temporally and aesthetically related actions executed by a set of actors [50])

and dance improvisation in the LuminAI installation [50, 2, 16] to investigate object-based

proto-narrative improvisational theater. Object-based proto-narrative improvisational the-

ater was chosen because of its emphasis on embodiment and environmental interaction.

Improvisation within this domain would also demonstrate success despite an increase both

in the complexity of the interaction modalities used for improvisation and in the degree

of narrative (as well as semantic) structure required for the domain, compared to prior

work in the LuminAI installation. Additionally, while unconstrained embodied narrative

improvisation could be performed through any of the body’s interaction modalities includ-

ing speech, gesture, non-verbal communication, environmental interactions, this research

is restricted to embodied improvisation using gesture and object-based interactions within

virtual environments in order to make the problem tractable (as in my prior work). These

restricted domains of embodied improvisation that are closely related to embodied narrative

improvisation and include domains from prior work as well as the main problem domain

for research in this dissertation are collectively referred to as movement improv.

Definition 1.2.4 (Movement Improv) The set of embodied improvisational domains that

are closely related to embodied narrative improvisation but are restricted to focus on full-

body gestural interaction between fellow improvisers as well as object-based interactions

within the environment they are situated in while requiring varying levels of improvisational

complexity in terms of narrative and semantic structure.

Movement improv forms a simplified set of embodied improvisational domains com-

pared to unconstrained embodied narrative improvisation. However, it encompasses a large
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number of creative domains and practices from the real-world such as improvisational

dance, prop-based improv theatre games, collaborative VR sandbox games, or pretend

play with toys. Human-agent movement improv is difficult for improvisational agents to

perform due to several inherent challenges. Prior work in human-agent movement improv

within the domains of pretend play [51] studied the problem of narrative improvisation with

non-experts. More recent work in gestural proto-narrative and improvisational dance within

the LuminAI installation [50, 2, 16] explored how to address the knowledge-authoring

bottleneck (the difficulty of acquiring expert knowledge followed by its subsequent repre-

sentation and storage to enable efficient future utilization) that restricted the pretend play

research to severely limited problem domains for improvisation. My prior research within

the LuminAI installation highlighted that a critical challenge for embodied improvisational

agents to perform human-agent movement improv is the improvisational action selection

problem.

1.2.1 The Improvisational Action Selection Problem

Embodied agents that are performing movement improv with people are required to pro-

duce a response in near real-time based on the current context of the unfolding improvised

performance. They face the challenge of selecting their response from an open-ended ac-

tion space in the presence of an ill-defined goal space to guide their action selection. In

order to work within the severe temporal constraints for action selection within improvisa-

tional domains, the agent could attempt to use stochastic or shallow reasoning. However,

this can easily result in generated agent behavior that is perceived as incoherent in the

long term [2, 16]. On the other hand, attempting to perform deep and complex reason-

ing in order to select an action can easily result in violating the temporal constraints of

the domain, leading to perceived decision paralysis from the agent. In both cases, the ab-

sence of well-defined goals to follow or objective functions to optimize for action selection

also adds to the risk of the selected actions not being meaningfully different or expressive
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enough at different points in the improvised performance or across different performances.

Thus the agent is required to perform improvisational reasoning in order to select actions

while avoiding incoherent behavior, decision paralysis, and unexpressive responses. The

improvisational action selection problem is then defined as follows in this research.

Definition 1.2.5 (The Improvisational Action Selection Problem) The challenge of per-

forming action selection as an improvisational agent in near real-time from an open-ended

action space with an ill-defined goal space based on previous experience and the current

improvisational context in order to avoid incoherent behavior, decision paralysis, and un-

expressive responses.

The severity of the improvisational action selection problem is directly dependent on

the complexity of the improvisational task. Pressing [19] refers to this in musical impro-

visation as “a continuum of possibilities between the extreme hypothetical limits of ‘pure’

improvisation and ‘pure’ composition.” He also states that for human improvisers the two

theoretical extremes are “never obtained in live performance because no improviser (even

in ‘free’ improvisation) can avoid the use of previously learned material, and no re-creative

performer can avoid small variations specific to each occasion.” The complexity of im-

provisation directly affects the severity of the improvisational action selection problem

with ‘pure’ improvisation being the most challenging to address. For a severely reductive

example, the use of jazz standards reduces the improvisational complexity to the task of

improvising melodic variations based on these widely-known songs. On the other hand,

the task of improvising a long-form improvisational theater narrative consists of a much

more fundamental negotiation of the conventions for a performance in parallel with the im-

provisation of content within those negotiated conventions. The latter is, therefore, a more

complex improvisational task and faces a more severe form of the improvisational action

selection problem.

The complexity of the improvisational task and the severity of the improvisational ac-

tion selection problem vary inversely with the degree of formal structure or improvisational
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constraints present on that task. While not a perfect mapping, the degree of structure in

Pressing’s [19] concept of referent (an “underlying formal scheme or guiding image spe-

cific to a given piece” that is “used by the improviser to facilitate the generation and editing

of improvised behaviour”) is useful as a proxy to understand the degree of structure present

in a given improvisational task. The more rigid the productive mapping between referent

and generated or integrated content, the more tightly constrained and more structured the

improvisation. Pressing [19] also states conversely, that “if no referent is present, or if it

is devised in real-time,” the result is “/,‘free’ or ‘absolute’ improvisation.” This is a much

rarer improvisational form than the previous “referent-guided, or ‘relative’ improvisation”

and faces a much more severe improvisational action selection problem. For example,

comparing modern improv theater with the Commedia Dell’arte [52], there are clearer

constraints imposed on improvisation within Commedia Dell’arte due to the stereotypical

characters and high-level plot outlines than on modern improvisational actors, leading to a

greater severity of the improvisational action selection problem in modern improv theater

as a domain than the Commedia Dell’arte.

Various computational techniques have been used in the past for problem spaces where

it is not desirable (or even possible necessarily) to define/enumerate a set of goals for an

agent to follow. Some of these techniques include evolutionary algorithms and reinforce-

ment learning (along with its variations). For movement improv, however, by definition,

it is not possible to formalize the entire problem into a set of objective function(s) for

evolutionary approaches to optimize. Similarly, reinforcement learning (RL) [53] is not a

feasible solution either due to the lack of a well-specified reward function for movement

improv. A number of inverse RL [54] or imitation learning [55] variants from the RL re-

search space could potentially be used in this situation since they either learn a reward

function to optimize or directly learn a policy imitatively respectively from observing hu-

mans complete a task. However, due to the vast size of the action space for performing

movement improv and the sample inefficiency of these approaches, they cannot practically
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be used at the moment.

1.3 Problem Domain

The research in this dissertation continues my investigation of improvisational agents for

embodied co-creativity in movement improv from prior work that focused on how agents

can improvise gestural proto-narrative or dance while attempting to address the knowledge-

authoring bottleneck involved [50, 2, 16]. The problem domain described in this disserta-

tion for studying the improvisational action selection problem shows an increase in im-

provisational complexity from my prior work in order to form a clear progression towards

unconstrained embodied narrative improvisation in the future.

1.3.1 Object-based Gestural Proto-narrative and The Props Game

Object-based gestural proto-narrative (a sequence of temporally and aesthetically related

actions executed by a set of actors [50] using the interaction modalities of gestural and

object-based interaction) within a virtual environment was explored as the movement im-

prov domain for this dissertation continuing from prior work in gestural proto-narrative

and improvisational dance [50, 2, 16]. This particular problem domain was chosen as an

advancement over that prior work in terms of both the degree of narrative (or action se-

mantics) involved and the interaction modalities for the agent to improvise with people.

The ‘rules’ of the domain were also structured enough to allow for the exploration of the

improvisational action selection problem.

The specific form of object interaction-based proto-narrative that was chosen for this

research was the Props Game from short-form improv theatre. The Props Game involves

improvised interactions between two or more participants using unfamiliar, ambiguous

props to perform recognizable comedic actions pretending the prop to be a familiar real-

world or fictional object. Therefore, in this research, the performance was taking place

between an embodied virtual agent and a human improviser using ambiguous props that
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were potentially unfamiliar to the agent. Beyond improv theater, this problem is useful

for embodied agents in general since it is the first step towards allowing them to gain new

knowledge about unfamiliar objects through interaction. For example, this could include

an agent learning to use unfamiliar objects in unfamiliar scenarios according to familiar

human norms/customs or using unfamiliar objects for a specific task, such as improvising

a digging tool for disaster recovery.

1.3.2 Movement Improv With Non-experts

Improvisation with non-experts was explicitly a design consideration in this research for

multiple reasons. Firstly, previous research [56] had indicated the reduced dissemination

impact of the improvisational experiences when restricting the experiences and activities

that were involved to a target population of experts in a niche domain. Secondly, expert

users tended to want to exert more control over the improvisational performance and in

co-creative interactions than non-experts did [13]. Thirdly, it was intended that designing

installations in public spaces for non-experts would democratize access to the installation

and encourage more diversity in the knowledge that was learned and eventually entered

the installation. Finally, it was also decided that non-expert data would be used to train

the agents in the installation in order to reduce participants’ social embarrassment about

improvising in public next to an intimidatingly expert improviser and lower the barrier for

entry to participate in the installation.

1.4 Improvisational Agents For Performing Movement Improv

Improvisational agents that are required to perform movement improv with non-experts

need to address the improvisational action selection problem (see section 1.2.1). Perhaps

improvisational agents can take inspiration (and generalize) from the different aesthetic

trajectories that are found to give guiding structure to various artistic and creative domains

such as dramatic arcs in narrative, arcs of rising or falling tension in music, and visual lines
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or movement in visual art in order to address the improvisational action selection prob-

lem and perform movement improv with non-experts. I hypothesize that improvisational

agents performing movement improv with non-experts using a form of intrinsically

motivated action selection called creative arc negotiation successfully address the im-

provisational action selection problem. Creative arc negotiation and related terms are

defined in this dissertation as follows.

Definition 1.4.1 (Creative Space) The multi-dimensional space of novelty, unexpected-

ness (as a measure of surprise), and quality (as a measure of value) within which perceived

or generated action variants can be localized.

Definition 1.4.2 (Creative Arc) The desired temporal progression or target trajectory for

an agent’s selected actions within a creative space over the course of an improvised per-

formance.

Definition 1.4.3 (Creative Arc Negotiation) Interruptible, temporally constrained, search-

based action selection to best follow a given creative arc through the agent’s creative space

considering the current improvisational context and the agent’s previous experience.

Addressing the improvisational action selection problem entails by definition that the

agent can select actions in near real-time from an open-ended action space and an impro-

visational domain with an ill-defined goal space. This also implies that the improvisational

agent can successfully avoid decision paralysis, incoherent behavior, and unexpressive re-

sponses if it is able to follow the guiding structure of the given creative arc over the course

of the improvised performance. Therefore, I hypothesize that successfully addressing the

improvisational action selection problem using creative arc negotiation will increase

both participant and audience perceptions of enjoyment, agent creativity, and coher-

ence over the course of the improvised performance.

An improvisational agent performs creative arc negotiation by strategically searching

an action space during its turn and evaluating candidate action variants that are generated
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during the search to find the closest match to the next target point on the given creative

arc within the temporal constraints of its turn. Through the research in this dissertation, I

explore how improvisational agents can operationalize the creative arc negotiation process

using the following components.

• A parameterizable action variant generator from the agent’s action space.

• A set of improvisational reasoning strategies for guiding the agent’s action space

search based on previous experience as well as the current improvisational context.

• A set of computational models for evaluating the creativity of perceived or generated

action variants in terms of their novelty, unexpectedness, and quality.

An improvisational agent that aims to perform movement improv with non-experts us-

ing creative arc negotiation needs to be able to generate action variants from the agent’s ac-

tion space based on a given set of parameters. In the object-based gestural proto-narrative

domain described in this dissertation, the physical attributes of objects that are provided to

the agent to use for improvising actions form a useful set of parameters to conditionally

constrain the action variant generation in addition to other search parameters. A compu-

tational model that learns a mapping between the physical attributes of objects and the set

of possible actions with those objects enables the agent to generate action variants that can

serve as candidate actions for the agent to use as its responses. Such a model implements

an acquired relation between the agent’s learned action space, the physical object attributes

that the agent has experienced, and the embodied capabilities of the agent. Therefore, it

forms a model of affordance-based action variant generation according to Şahin, Çakmak,

Doğar, Uğur, and Üçoluk [57]’s definition of affordance (see sections 2.3.1 and 3.3.4 for

more detail). This work explores how affordance-based action variant generation en-

ables the agent to perform parameterized action variant generation from a learned

action space as a part of creative arc negotiation.
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Creative arc negotiation requires the agent to search its creative space to find the clos-

est candidate response to the next target point on the given creative arc in near real-time.

Human improvisers have been known to use various reasoning strategies for generating

responses in near real-time based on their previous experience and the current improvisa-

tional context across various forms of improvisation [19, 58]. Computational formaliza-

tions of these improvisational reasoning strategies have been used in prior work to enable

the agent to respond to humans with potentially valid actions even when it has not learned

the constraints or ‘rules’ of the domain [50]. This research examines how improvisational

reasoning strategies formalized from human improvisers and extended from prior

work enable the agent to search its action space based on its previous experience and

the current improvisational context while performing creative arc negotiation.

Creative arc negotiation requires the improvisational agent to computationally evaluate

the creativity of action variants that it generates as possible responses to its partner as well

as the human improviser’s actions that it perceives. The agent evaluates these actions in

terms of their novelty, unexpectedness (as a measure of surprise), and quality (as a measure

of value). This dissertation studies how computational models of novelty, unexpected-

ness, and quality enable the agent to evaluate the creativity of perceived and generated

actions in near real-time for performing creative arc negotiation.

1.5 Thesis Statement

This dissertation synthesizes the hypotheses described above and presents an investigation

of the following thesis statement.

Embodied agents that address the improvisational action selection problem us-

ing ‘creative arc negotiation’ increase perceptions of enjoyment, agent creativ-

ity, and coherence in both observers and participants while performing move-

ment improv with non-experts.
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1.6 Research Questions

The avenues of inquiry presented by the thesis statement above were pursued through the

following research questions (RQ).

RQ1 How can an agent perform parameterized action variant generation from a

learned action space based on the physical attributes of a given object?

RQ2 How can an agent improvisationally search its action space based on previous

experience and the current improvisational context?

RQ3 How can an improvisational agent computationally evaluate the creativity of

perceived or generated actions in near real-time in terms of their novelty, unex-

pectedness (as a measure of surprise), and quality (as a measure of value)?

RQ4 How can an embodied agent select actions to negotiate a given creative arc in

order to address the improvisational action selection problem while performing

movement improv with non-experts?

RQ5 How does addressing the improvisational action selection problem while per-

forming movement improv with non-experts affect both observer and partici-

pant perceptions of enjoyment, agent creativity, and coherence?

The research in this dissertation investigating the guiding research questions (RQ) is

outlined below as a set of objectives (O) for exploring each research question, methods

(M) used to achieve the objectives and measurable outcomes (MO) from the research in the

following list.

RQ1 How can an agent perform parameterized action variant generation from a

learned action space based on the physical attributes of a given object?
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O1.1 To create a computational model of parameterized action variant generation

from a learned action space, conditioned on the physical attributes of objects

(affordance-based action variant generation).

∗ Methods

M1.1.1 Explore the use of conditional variational autoencoders and latent space

sampling for affordance-based action variant generation.

M1.1.2 Validate the model of affordance-based action variant generation.

∗ Measurable Outcomes

MO1.1.1 A validated model of affordance-based action variant generation from

a learned action space.

RQ2 How can an agent improvisationally search its action space based on previous

experience and the current improvisational context?

O2.1 To formalize procedural reasoning strategies adapted from human improvisa-

tion practices across domains in order to guide the agents action selection in

open-ended action spaces with ill-defined goals using previous experience and

the current improvisational context.

∗ Methods

M2.1.1 Explore the use of procedural strategies for latent space search within

a conditional variational autoencoder model to formalize improvisa-

tional response strategies from human improvisers and search the agent’s

learned action space using previous experience and the current impro-

visational context.

M2.1.2 Evaluate the agent can perform improvisational action selection in open-

ended action spaces with ill-defined goals using improvisational re-

sponse strategies.

∗ Measurable Outcomes
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MO2.1.1 Validated formalization of improvisational response strategies that heuris-

tically guide the agents action selection in open-ended action spaces

with ill-defined goals using previous experience and the current im-

provisational context.

RQ3 How can an improvisational agent computationally evaluate the creativity of

perceived or generated actions in near real-time in terms of their novelty, unex-

pectedness (as a measure of surprise), and quality (as a measure of value)?

O3.1 To create a computational model for evaluating the novelty, unexpectedness,

and quality of perceived human actions and generated agent actions.

∗ Methods

M3.1.1 Explore the use of content-based mean distance to evaluate the gestural

and semantic novelty of perceived or generated actions.

M3.1.2 Explore the use of Bayesian Surprise [59] and distance from expected

outcome [60] to evaluate the gestural and semantic unexpectedness of

perceived or generated actions given the physical attributes of the ob-

ject being used to enact them.

M3.1.3 Explore the use of heuristic functions to evaluate the quality of per-

ceived or generated actions in terms of their smoothness and recogniz-

ability.

M3.1.4 Evaluate whether the models for evaluating the novelty, unexpected-

ness, and quality of perceived and generated actions match human per-

ceptions of these qualities.

∗ Measurable Outcomes

MO3.1.1 Validated computational model for evaluation of novelty for human

and agent actions.
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MO3.1.2 Validated computational model for evaluation of unexpectedness for

human and agent actions.

MO3.1.3 A validated computational model for evaluation of quality in terms of

the smoothness and recognizability of the gesture

RQ4 How can an embodied agent select actions to negotiate a given creative arc in

order to address the improvisational action selection problem while performing

movement improv with non-experts?

O4.1 To create an embodied agent architecture that enables an agent to negotiate a

given creative arc while performing movement improv with non-experts.

∗ Methods

M4.1.1 Explore the use of parameterized action variant generation, formaliza-

tion of improvisational response strategies, and creativity evaluation

models to enable an agent to negotiate a given creative arc while per-

forming movement improv with non-experts.

M4.1.2 Evaluate whether the embodied agent architecture enables an agent to

negotiate a given creative arc while performing movement improv.

∗ Measurable Outcomes

MO4.1.1 A validated embodied agent architecture that enables an agent to ne-

gotiate a given creative arc while performing movement improv with

non-experts.

RQ5 How does addressing the improvisational action selection problem while per-

forming movement improv with non-experts affect both observer and partici-

pant perceptions of enjoyment, agent creativity, and coherence?

O5.1 To evaluate how an embodied agent that can negotiate a creative arc while per-

forming movement improv with non-experts affects user and observer percep-
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tions of enjoyment, agent creativity, and coherence.

∗ Methods

M5.1.1 Evaluate how participant and observer perceptions of enjoyment, agent

creativity, and coherence are affected when improvising with a creative

arc negotiating embodied agent within an interactive installation for

performing movement improv with non-experts.

∗ Measurable Outcomes

MO5.1.1 Validated results on how an embodied agent that can negotiate a cre-

ative arc while performing movement improv with non-experts affects

participant and observer perceptions of enjoyment, agent creativity,

and coherence.

1.7 Contributions

The contributions of the research in this dissertation are as follows.

• A model of affordance-based action variant generation for conditionally searching

the agents learned action space based on a given objects physical attributes.

• A formalized set of improvisational reasoning strategies for guiding an agents action

space search based on previous experience and the current improvisational context.

• Computational models for evaluating the creativity of perceived and generated action

variants in terms of their novelty, unexpectedness (as a measure of surprise), and

quality (as a measure of value).

• A model of creative arc negotiation for improvisational action selection while per-

forming movement improv with non-experts that increases participant and observer

perceptions of enjoyment, agent creativity, and coherence.
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• A publicly disseminated and validated interactive installation where embodied agents

can perform movement improv with non-experts.

The remainder of this dissertation continues by detailing related work that contextual-

izes the research conducted and the claims made in this dissertation. The dissertation then

describes the improvisational action selection problem and how it is studied within the

Props game domain through the Robot Improv Circus VR installation and the CARNIVAL

agent architecture. The chapter continues to discuss the problem studied, the framework

for addressing it in relation to my thesis statement, the technical approach taken to address

the problem, various evaluation experiments for understanding the degree to which the so-

lution addressed the claims in my thesis statement, and a further discussion to highlight ad-

ditional insights from the system building and evaluation process. Finally, the dissertation

concludes with a chapter that reiterates the contributions of the research in this dissertation

and provides a quick sketch of future directions for this work as it relates to the problem of

unconstrained embodied narrative improvisation.
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CHAPTER 2

RELATED WORK

2.1 Creativity Research and Computational Creativity

Formal studies of creativity have focused on different aspects of the phenomenon. Some

researchers have studied creativity from a domain-independent perspective considering the

psychometrics of creativity [61], characterizations of creative personalities [62], analyses

of creative environments [63], case studies of creative process [64], and experimental enu-

meration of the cognitive processes involved in creative cognition [65]. Others have studied

creativity observing the processes that practitioners in specific creative domains actually

follow to produce creative artifacts. These include studies of artistic or expressive domains

like music [66], visual art [67], and storytelling [68] as well as other creative domains such

as design [69], insight problem solving [70], and scientific invention [71].

The fields of artificial intelligence and machine learning have, more recently, given

creativity researchers the tools and techniques to computationally model creativity. These

have included computational systems that either attempted to emulate human creative cog-

nition or to use uniquely computational processes for performing creative tasks. Some ex-

amples include MEXICA [72] system that used a cognitive model of human composition

(originally from creative writing) called engagement-reflection (ER) to generate stories, the

COLIBRI [73] system that used a case-based reasoning (CBR) [74] approach to generate

poetry, and the Painting Fool [75] artificial visual artist system that used several models of

visual art and visual creativity to generate paintings.

My research into improvisational agents for embodied co-creativity is situated within

this field of computational creativity. Computational creativity research involves the “phi-

losophy, science and engineering of computational systems which, by taking on particular
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responsibilities, exhibit behaviors that unbiased observers would deem to be creative” [76].

Computationally creative systems include the Angelina system for automatically generat-

ing video games [77], The Painting Fool system for generating visual art [75], IDyOM

for music generation [78], and COLIBRI for poetry generation [73]. This traditional def-

inition has been expanded over the years, bringing related areas of research into the fold.

A relatively recent area of interest within the computational creativity community is in

computational systems that perform co-creation and co-creativity alongside human collab-

orators.

2.1.1 Computationally Co-creative Systems

Co-creativity (or collaborative creativity) refers to creative processes where there is active

participation from two or more collaborators at a high-level [79]. Additional criteria can be

applied to this definition such as the need for synchronous participation and collaborative

emergence [80], the relative balance of creative agency and responsibility [2], or various

creative roles for the collaborators in the co-creative process [14, 16, 17]. Some authors

have also identified co-creation as a more general process that reduces the creative respon-

sibility of the computational agent involved in the collaboration [13]. Some examples of

co-creative or co-creational agents in the literature include collaborative sketching agents

[25, 81], collaborative game design agents [82, 83, 84, 85], creative writing or storytelling

[86, 87, 88, 89, 90], and dance or choreography [91, 92, 93, 94, 95]. The vast majority of

existing co-creative agents in the literature are disembodied agents that users interact with

through software user interfaces. In contrast, this dissertation focuses on understanding

how to build co-creative agents specifically for embodied improvisational domains such

as gestural proto-narrative, dance, and object-based gestural proto-narrative improvisation.

Additionally, the research presented in this dissertation contributes to co-creative agents

that possess equal creative agency and responsibility during the co-creative process.
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2.1.2 Improvisational Systems

Improvisational agents demonstrate near real-time co-creativity or co-creation in open-

ended, ill-defined domains. A limit set of previous improvisational systems can be found

in the domains of musical improvisation [96, 97, 98, 99], emergency response management

[100], improvisational theater [101, 56, 26, 102, 103], collaborative visual art [104], dance

[105], and improvisational storytelling [106]. In contrast to the relatively simplistic for-

mulaic improvisation strategies used in the majority of music improvisation systems, the

systems presented in this work can learn domain-specific improvisational patterns directly

from the users actions as well as use formalizations of general-purpose improvisational re-

sponse strategies to act within regions of decision space where it has no prior experience.

The emergency response decision support [100], Three Line Scene [26], and Party Quirks

systems [56] were designed as cognitive models of the improvisational process. However,

they maintain a static repository of encoded expert knowledge to use, and thus can only

be used in significantly limited versions of the open-ended domains in which they were

designed to improvise. They would also suffer from the improvisational action selection

problem if their domains were expanded to be realistically open-ended. The proposed re-

search aims to overcome this shortcoming in current approaches by having the system use

creative arc negotiation to mitigate the improvisational action selection problem. Newer

improvisational systems such as [104, 103, 106] offer exciting directions for addressing

the improvisational action selection problem. However, all three systems fail to evaluate

the creativity of their responses/offers before producing them, leading to reduced creative

agency and more creative responsibility placed on their human collaborators for incorpo-

rating the system’s outputs into the improvised performance.
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2.2 Learning and Generating Actions For Movement Improv

The improvisational agents presented in this dissertation perform generative exploration of

actions learned from demonstration in order for the agent to perform action space search

while selecting actions improvisationally. The embodied knowledge that agents must learn

in order to be able to respond successfully and expressively to human improvisational part-

ners within movement improv varies based on the particular performance domain but could

include 1) the set of gestures that can possibly be performed in the domain; 2) seman-

tic knowledge about what the gestures ‘mean’, portray, or cause within the domain that is

grounded in the agent’s experience; 3) the set of causal, temporal, and aesthetic constraints,

policies, patterns, or rules that in the agent’s experience, allow it to sequence together the

actions it knows about; and 4) other conceptual or procedural knowledge about its envi-

ronment, performance, or other agents within the domain that it learns over time. The

embodied agents presented (or referred to in prior work) in this research learn a subset of

this knowledge to different degrees from their human collaborators with the iterative ap-

plication of action learning from demonstration after every performance is completed (see

section 3.3.4).

2.2.1 Learning from Demonstration (LfD) and Imitation Learning

Imitation learning and learning from demonstration (LfD) are both forms of observational

learning. There are sometimes used interchangeably in the robotics and human-robot in-

teraction (HRI) literature [107, 108]. The two terms can refer to different techniques for

observational learning in the reinforcement learning (RL) community [53] however. In the

latter context, LfD includes techniques like inverse reinforcement learning (IRL) where the

reward function is learned from demonstration, and regular RL is used to learn a policy

for optimizing that learned reward function [54], while imitation is restricted to techniques

like behavioral cloning that learn both actions and policies from demonstration [55]. LfD
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research in HRI includes learning compound action models from demonstration by learn-

ing the sequencing and structure of primitive actions that make up a compound action

commonly using Gaussian mixture models, support vector machines, or hidden Markov

models [107, 108]. Other research in this area focuses on the learning of task networks that

encode a graph-based representation of the sequence of primitive actions and higher-level

combinations of these primitive actions [109]. A recent approach also presents case-based

imitation learning for transferring learned skills to new contexts [110]. LfD and imita-

tion learning in both HRI and RL contexts are usually applied to heavily constrained and

well-specified tasks due to their sample inefficiency and the necessity for providing enough

demonstrations to cover the decision space. In contrast, the improvisational agents pre-

sented in this dissertation operate within open-ended, ill-defined problem domains where

the lack of a well-specified reward function and the size of the action space make the pre-

ceding techniques difficult to apply.

2.2.2 Generation of Action Variants

The improvisational agents presented in this dissertation directly learn an explorable latent

action space from a set of demonstrations. Research in gesture generation has explored

related questions to this approach, where gestures are synthesized using different tech-

niques. Older systems explored this problem used statistical sequencing of primitive gestu-

ral components, while more recent research has used direct synthesis using neural network

approaches.

Gesture synthesis systems in disciplines such as choreography synthesis, robotics, and

embodied conversational agents, try to create parameterized, natural, and expressive ges-

tures by following a similar pipeline: input to gesture planner, selection by a statistical

model, and modification by final component [111]. Generative choreography systems such

as Ikeuchi [112] and Ofli, Erzin, Yemez, and Tekalp [113] used segmented music measures

as a conditioning input to their generative choreography systems. The most statistically
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likely candidate dance segments from a pre-authored database were then chosen based on

the music inputs and combined to create smooth transitions. Embodied conversational

agents create gestures from speech, text, or video clips. Mancini and Castellano [114] used

video tracking and analysis to create an agent capable of mimicking detected expressivity.

Kipp, Neff, Kipp, and Albrecht [115] focused on creating natural gestures in virtual agents

by using g-units to create continuous flowing movements from gesture segments. Previous

models of gestural creativity have been successful in mimicking tasks, but a deep genera-

tive model was chosen for action variant generation in the latter part of this work instead of

a traditional statistical model because of the open-ended action space in the domain.

Gesture synthesis has made significant advances through deep generative models such

as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). They

have proven to be particularly useful for generating novel gestures and choreography with

minimal feature engineering by hand. Augello, Cipolla, Infantino, Manfré, Pilato, and Vella

[116] employed a vanilla VAE trained on a data set of human dance movements to generate

robot dance movements. Similar work by Kiasari, Moirangthem, and Lee [117] focused on

combining VAEs and GANs to produce sequences of stylized actions. Their model utilized

latent variables from the autoencoder as input to the GAN’s discriminator network, while

the input to the GAN’s generator network was conditioned using action labels and initial

poses of the generated action sequences. The architecture presented in this work also seeks

to control the mode of the generated data through conditioning but adds conditioning both

at input and latent space sampling stages since we draw inference directly from the latent

space (see section 3.4.3).

Recurrent Neural Networks (RNNs), notably Long Short-Term Memory (LSTM) net-

works, have also commonly been used for sequential motion generation. Researchers have

exploited the hidden Markov model process underlying motion and choreography by using

RNN models that combine distributed hidden states and non-linear dynamics. The results

are evident in choreographic support [118, 119] and motion synthesis [120, 121]. The
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approach presented in this work extends previous work by conditioning RNN-based gen-

erative models for gesture synthesis and preserving local/regional coherence by grouping

multiple poses within temporal proximity.

2.3 Computational Formalizations of Tacit Knowledge

Improvisational practitioners rely on tacit knowledge of many kinds in order to successfully

improvise performances in near real-time. These can include tacit knowledge in the forms

of learned conceptual systems, frameworks, and vocabularies from within the domain for

conceptualizing or reasoning about different aspects of the performance during the improvi-

sation; learned constraints and rules specific to the performance company/troupe or within

the improv theater game/activity being played/performed; and learned procedural knowl-

edge about how to act in various situations, including procedural strategies for improvising

in uncharted performance territory. This section describes formalizations of tacit knowl-

edge that are implemented as procedurally encoded mappings and procedural strategies

so that they can be applied across many different contexts rather than just being additional

expert knowledge that needs to be repeatedly authored for every new improvisational agent.

2.3.1 Affordance Domain Knowledge

The research presented in this dissertation on improvisational agents for object-based ges-

tural proto-narrative improvisation relies on the formalization of a learned procedurally en-

coded mapping between physical object attributes and the action variants within an agent’s

learned action space. This enables the agent’s local action space exploration to be con-

strained to regions of the global action space that are ‘afforded’ by the physical attributes

of that object. This section examines definitions of affordance and how they might apply

to the current context.

The concept of affordances was first introduced by Gibson in his seminal work on eco-

logical psychology [122, 123]. Over time, the term was adopted and adapted by designers
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[124] and roboticists [125], among others (for a survey of perspectives on affordances, see

[126]). The resulting blurring and adaptation of the meaning of the term ‘affordance’ have

tailored the definition of the term to the needs of the individual field within which it is used.

The term was originally defined by Gibson in [122] as follows. “When the constant

properties of constant object are perceived (the shape, size, color, texture, composition,

motion, animation, and position relative to other objects), the observer can go on to detect

their affordances.” He elaborated on the meaning of the term in later writing [123] by stat-

ing that the “affordances of the environment are what it offers the animal, what it provides

or furnishes, either for good or ill. The verb to afford is found in the dictionary, but the

noun affordance is not. I have made it up. I mean by it something that refers to both the

environment and the animal in a way that no existing term does. It implies the complemen-

tarity of the animal and the environment.” In this most commonly referenced description of

Gibson concept of affordances, the relationship between animal and object/environment is

clearer than his initial definition. Additionally, Gibson also specified the process by which

affordances are perceived and utilized. An agent perceives an object’s affordances by di-

rectly perceiving and recognizing its perceptual invariants to mean the presence or absence

in that object of a particular affordance that enables it to perform the specific action corre-

sponding to that affordance with that object, i.e., it enables the agent to use that object in

that particular way. This means that the set of affordances are fixed for every object and

are represented as binary presence-absence values for any particular action (of which there

may be many thousands of actions).

Perspectives from other fields have also been useful for comparison with (and usage

within) this work. Norman [124] provided a modified description of affordances as the

relationship between the agent interacting with an object in its environment and the per-

ceived actions that could be done with that object. In Norman [124]’s own words, “affor-

dance refers to the perceived and actual properties of the thing, primarily those fundamental

properties that determine just how the thing could possibly be used.” This focuses on the
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perception of the afforded actions in addition to the absolute affordances that are function-

ally available to the interacting agent regardless of the plausibility of discovery or usage.

He later termed this ‘perceived affordance’ to distinguish it from Gibson’s [123] usage of

the term. Norman did eventually come to regret the casual eliding of both terms in field

of design community and stated that, “[w]hen I get around to revising POET [[124]], I

will make a global change, replacing all instances of the word ‘affordance’ with the phrase

‘perceived affordance’.”

Adapting later perspectives from ecological psychology from both Stoffregen [127],

who stated that affordances are “properties of the animal-environment system” and that

“they are emergent properties that do not inhere in either the environment or the animal”,

and Chemero [128], who stated that affordances are “relations between the abilities of

organisms and features of the environment”, Şahin, Çakmak, Doğar, Uğur, and Üçoluk [57]

defined affordances as follows. “An affordance is an acquired relation between a certain

effect and a (entity, behavior) tuple, such that when the agent applies the behavior on the

entity, the effect is generated.” Comparing this definition to previous definitions, the entity

refers to the object and its properties, the behavior refers to the embodied capabilities of the

agent that interacts with the entity, and the effect describes the outcome of some kind from

performing an action on/with that entity. It is important to note that the relation between

the effect and the entity-behavior tuple is not intrinsic, but acquired somehow, whether

through previous interaction, explicit design, or some other process. This differentiates it

significantly from Gibson’s [123] original notion of affordances being part of the intrinsic

nature of an object within the agent’s environment. This definition, in combination with

Norman’s [124] earlier definition form the basis for the usage of the term ‘affordance’ in

this work.

The concept of affordance in my work (defined in my research as “a learned tacit proce-

dural mapping between the physical attributes of an object in the agent’s environment and

that agent’s learned action space that partitions and controls access to that agent’s action
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space.”) applies to an embodied agent situated within its environment alongside objects

with which it has the embodied ability to interact. Affordance, in this context, is defined as

a tacit learned mapping that is procedurally encoded between the physical attributes of an

object in the agent’s environment and that agent’s learned action space that partitions and

controls access to that agent’s action space. This represents a relational mapping between

the entity (i.e., the physical attributes of the object), its embodied capabilities, and the set

of actions possible, similar to Şahin, Çakmak, Doğar, Uğur, and Üçoluk’s [57] definition

of affordances. However, since the agent’s improvised actions are pantomimed, an action’s

effects are not physical but represented in terms of the agent’s interpretation of what is

being portrayed (or signified). The mapping, in turn, makes certain regions of the agent’s

action space (i.e., certain actions) more or less difficult to generate from (or even consider).

In this way, it forms a hybrid interpolation between the absolute affordances (possible or

impossible actions) that Gibson [123] describes and the perceived affordances (more or less

easily perceived actions) that Norman [124] describes.

2.3.2 Procedural Improvisation Knowledge

Many tacit or learned genre conventions, structural rules, and procedural strategies exist

in improv theater to facilitate successfully coherent and entertaining improvised perfor-

mances from the performers despite the severity of the improvisational action selection

problem for the ground-up embodied narrative improvisation seen in improvisational the-

ater. For example, in long-form improv theater where improvised performances can rival

the duration of a rehearsed play, there might be structural rules that improvisers have de-

cided on beforehand such as fixed sequences for starting and ending scenes from multiple

subplots as well as how to move between the parallel scenes from multiple subplots. This

preserves the vastly open-ended and massively ill-defined nature of the long-form improv

theater problem domain but provides some degree of constructive constraints for the impro-

visational process. Similarly, other improvisational art forms have their own conventions
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and structures that facilitate coherent improvisation. The degree of structure can vary sig-

nificantly, however, from trading solos for a fixed number of measures over a jazz standard

to free jazz improvisation with far fewer constraints or the diversity in the degree of con-

straints between short-form and long-form improv theater. The following section presents

examples of practice-based and computational formalizations of tacit procedural strategies

from improv theater for constructing improvised narratives that are complementary to the

improvisational response strategies and creative arc negotiation process presented in this

dissertation.

Improvisational Conventions In Improv Theater

Conventions for improv theater include fundamental rules like, ‘Yes, and...’ which ensures

that performers constructively build on top of creative offers from other players without

stalling or halting the momentum of a scene, not being too clever when adding offers to

the scene in order to support other performers’ ability to react realistically to your offers,

or respecting the bounds, physical reality, and constraints of an imaginary setting that has

already been established by another performer [129]. Other conventions for certain kinds

of narrative-driven improv theater act as high-level procedural strategies for prescriptively

guiding action selection during the improvised performance (at least) at the high-level de-

scription of a practice-based framework. For example, Johnstone [130] describes the con-

vention of establishing a platform (i.e. what is the setting for a scene, who are the characters

in it, and what activity are they engaged in) as early as possible, then focusing on adding

conflict to give the scene purpose, and then repeatedly acting together to create and resolve

lesser conflicts or tilting the platform that has been established by adding new elements that

reinterpret the scene and create a new narrative direction to explore for the group.

An alternative to Johnstone’s high-level framework is the widely used practice-based

framework from the Upright Citizen’s Brigade (UCB) [131] involves finding the game of

the scene after establishing the platform and then navigating the remainder of the scene
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using three kinds of ‘improvisational moves’ — raising the stakes, exploration, and top of

intelligence responses [132]. In this framework, raising the stakes involves performing ac-

tions that add conflict, drama, or some form of narrative incoherence that has to be resolved

imminently. Exploration actions are those that justify some incoherence in the scene that

arose from a previously performed raising the stakes action. Finally, top of intelligence

actions are those that would form an established character’s natural reactions to unusual or

incoherent situations. According to this prescriptive framework, once the game of the scene

has started, actions have to repeatedly raise the stakes, cause top of intelligence responses

from other characters present, and then cause the unusual situation to be resolved or jus-

tified to some degree using exploration responses by one or more of the other characters

until the scene ends with enough of a resolution of the raised stakes.

Improvisers also have to collaboratively construct a shared fictional reality in real-time,

fluidly navigating ambiguity. Therefore, there are also tacit improvisational conventions

around resolving ambiguity without halting the performance and the construction process.

These conventions can be seen in various knowledge disparity games from short-form im-

prov theater such as Party Quirks, where improvisers arrive as guests, one by one, at a

host’s improvised party with a quirk that is only known to themselves and the audience.

The host is required to subtly investigate each guest’s quirk and equally subtly guess what

their quirk is without halting the improvised party or breaking character. The improvisers

who act as guests gradually reveal increasingly obvious clues about their quirks until the

host guesses correctly, but timed to provide the audience with a satisfyingly long time be-

ing the only ones (aside from the guest with the quirk) who know what the quirk is and

understand the references or inside jokes pointing to that fact.

Improvisers use tacit procedural strategies and conventions even in straightforward sit-

uations like platform establishment, where ambiguity needs to be resolved as quickly as

possible for the scene to proceed where an improviser A who is miming actions to con-

vey that they are raking leaves outside their house might be understood by improviser B
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to be sweeping the floor inside a cafe, there are clear conventions for navigating around

each performer’s beliefs about the ongoing improvisation. These strategies involve com-

municating what one improviser believes to be happening through actions related to the

content of the scene, monitoring the other improviser’s reactions to see if they are correct

in their original beliefs, correcting misunderstandings using a set of repair strategies, and

then covertly communicating that they (or the other improviser) have changed their beliefs

to best support the scene moving forward. This tacit shared mental model negotiation pro-

cess [133] is performed by experienced improvisers using procedural strategies so as to

fluidly navigate the ambiguity of a shared fiction that is being simultaneously explored and

constructed collaboratively while hiding the nature of the resulting cognitive divergences

from the audience observing this negotiation process.

Computer Models of Improvisational Conventions In Improv Theater

Several procedural strategies and improvisational conventions have been modeled com-

putationally in the literature by taking inspiration from the various practice-based frame-

works as well as by studying how improvisers actually perform improv in laboratory ex-

periments. O’Neill, Piplica, Fuller, and Magerko [26] describe a computational model for

establishing the platform in a short form improv theater game called Three Line Scene.

Brisson, Magerko, Brian, and Paiva, Ana [134] describe a computational model for finding

the tilt and exploiting it for adding progression to a scene being improvised. Though not

strictly from the domain of improv theater, Davis, Comerford, Hsiao, Jacob, and Magerko

[3] present the (partly computationally-implemented, partly conceptual) enactive model of

playing pretend (which can perhaps be understood as a less structured or stylized form of

everyday non-expert improvised narrative in comparison to improv theater). Davis, Com-

erford, Hsiao, Jacob, and Magerko’s particular model presents a marked similarity to the

UCB framework for finding the game of the scene. Magerko, Dohogne, and DeLeon [101]

described the improvisational strategies for navigating knowledge disparity games in the
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Party Quirks short form improv theater game and Hodhod, Piplica, and Magerko [135]

described an architecture for formally modelling the shared mental model negotiation pro-

cess in improv theater games. Additionally, Martin, Harrison, and Riedl [106] proposed

a system for open-world improvisation using plot graphs that included a set of strategies

for handling user actions as they were classified under constituent, consistent, and excep-

tional branches as a way to perform disembodied improv theater in the context of text-based

narrative improvisation.

The preceding computational models of procedural strategies for navigating various

components of the narrative improvisation task in improv theater heavily rely on rich, pre-

authored domain knowledge in order to function effectively. They are severely impacted

by the limitations of content authoring and need to address that problem before they can be

used to address the improvisational action selection problem. Martin, Harrison, and Riedl

[106] use plot graph learning from crowdsourced knowledge to avoid this problem in their

text-based improv domain. However, the problem remains challenging to address when

working with embodied content knowledge to enact the crowdsourced natural language

knowledge. As the semantic complexity and formal structure of the knowledge learned by

improvisational agents such as the ones presented in this dissertation increase to the point

where they can be used by these models, the approaches presented above would greatly

help to add structure and constraints to the ill-defined nature of the improv theater do-

main. Therefore, they remain complementary to the domain-independent improvisational

response strategies and the creative arc negotiation process presented in this dissertation.

2.4 Computational Models for Evaluating Creativity

There have historically been a large number of theories, models, and definitions for under-

standing (and subsequently evaluating) creativity from diverse research fields ranging from

media and cultural studies to psychology and cognitive science to artificial intelligence and

computational creativity. One way to organize this set of parallel ideas usefully is to use the
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4P taxonomy from Rhodes [136] that was later introduced to the field of computational cre-

ativity by Jordanous [137]. The 4P taxonomy organizes theories, models, and definitions

of creativity into the four categories of person or producer, product, process, and press.

Models of creativity that deal with person or producer focus on intrinsic characteristics that

make that person or producer creative (e.g., psychometrics for creativity [61, 138] or case

studies of creative people [139]). Product models focus on the creative artifact produced as

a part or result of creativity, while process models focus on modeling the creative process

itself. Press models focus on how the creative person/producer, process, or product affects

the culture, environment, or society within which it exists.

Several perspectives on creativity evaluation also deal with multiple aspects of the 4P

taxonomy simultaneously (e.g. Colton, Jordanous, Colton, Charnley, and Pease). Colton’s

creativity tripod [9] argues for evaluating a computationally creative system on the basis of

its skill, imagination, and appreciation of the creative medium seems on the surface to be a

producer/person model of creativity evaluation by the traits or characteristics of the system.

However, this work is intended in a way that addresses both person/producer and press

models of creativity evaluation.Jordanous’ Standardized Procedure for Evaluating Creative

Systems (SPECS) methodology [11] describes 14 criteria obtained through the analysis of

creativity research corpora that are suggested for use by researchers in creating their own

working definitions of creativity in order to rigorously evaluate the creativity of their system

according to that specific working definition. Colton, Charnley, and Pease’s FACE model

[10] evaluates computational creativity systems for creative concept invention, expression

of the concept as an artifact, aesthetic evaluation of the artifact, and the framing of the

artifact to the public.

The research presented in this dissertation uses a product definition of creativity (see

section 1.1), especially as part of the agent’s creativity evaluation models that are opera-

tionalized in this work (see section 3.3.6). However, the discussions of improvisation as a

process (see section 2.3.2), as well as the process of creative arc negotiation described in
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this work (see section 3.3.3), focus on process-based aspects of creativity. Therefore, this

section focuses on the process and product perspectives on creativity and will ignore the

person/producer and press perspectives. A part of the evaluation sections for the interactive

installation (see section 3.5) presented in the dissertation references press-based measures

of creativity, so the press perspective will be referenced as needed in context. For more

detail on all four categories, a detailed survey of models for evaluating creativity and how

they impact the methodology of computational creativity research can be seen in Lamb,

Brown, and Clarke [140].

2.4.1 Product Models of Creativity

Product models of creativity focus on the different potential qualities of an artifact that

enable it to be called creative to some degree. The most famous of these models is Bo-

den’s [8] model of creativity for artifacts that considers an artifact creative if it possesses

various kinds of novelty and value while evoking surprise in an experiencing entity. This

conceptual model was operationalized by Maher [141] to measure the novelty, surprise,

and value for artifacts resulting from design creativity. Ritchie [142] provide a parallel

evaluation framework for creative artifacts that features the additional criteria of typicality

(or conformity) to the expectations for artifacts in a domain. This added criterion empha-

sizes the desirability of both novelty as well as typicality depending on the context. Since

it provides mathematical models and computational functions for evaluating creativity, the

work presented in this dissertation extends Maher [141] to provide computational mod-

els for evaluating the novelty, unexpectedness (as a measure of surprise), and quality (as

a measure of value) of perceived and generated actions within improvisational domains.

Additionally, the systems presented in this dissertation incorporate a central idea that aim-

ing to maximize novelty and unexpectedness are not always the most important aspects of

a temporally-extended session of improvisational creativity. This is in keeping with both

Ritchie’s typicality and Perišić, Štorga, and Gero’s situated novelty.
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Pease, Winterstein, and Colton discuss how modified Turing Test evaluation methodol-

ogy emphasis computational pastiche and ‘window dressing’ rather than actual creativity

in generated creative artifacts. They recommend framing information as additional artifacts

that are needed for a computationally creative system as such. Lamb, Brown, and Clarke

[140] also agree and recommend it as methodology only if verisimilitude to human artifacts

is a true requirement for creativity in a system’s generated artifacts. Taking this advice to

heart, the modified Turing Test is only used to assess the properties of outputs from the

improvisational agents when verisimilitude is the point of the evaluation.

2.4.2 Process Models of Creativity

Process models of creativity describe different aspects of the creative process itself, rather

than focusing on the outputs of that process necessarily. Newell, Shaw, and Simon [7]

present a search-based process for creative problem solving that involves searching for

solutions to a creative problem that are novel and have value (similar to product theo-

ries), but also focus on the rejection of previous assumptions, demonstrating persistence

towards a goal, and the development of the problem specification itself over the course of

the search process. Boden [8] categorizes the different processes of generating creative ar-

tifacts (process in relationship to product creativity) into three categories — combinatorial,

exploratory, and transformational creativity. All three forms of creativity are described in

relation to the conceptual space of the creative domain. Combinatorial creativity involves

combining elements of a single (or multiple) conceptual space(s) together in order to gen-

erate creative artifacts. Exploratory creativity is a search through a conceptual space to dis-

cover different creative artifacts within the bounds of that space. Transformational creativ-

ity is the transformation of the ‘rules’ or bounds of a conceptual space to be able to generate

creative artifacts that couldn’t be generated within the bounds of that space previously, even

with the most exhaustive exploration. Combinatorial creativity includes processes such as

conceptual blending [145] (where elements of two input concept spaces are selectively
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mapped together and combined into an output conceptual blend space), analogy [146] and

metaphor [147] (different processes for selectively mapping and transferring elements from

a source space into a target space to create new conceptual outputs), conceptual expansion

[148] (combining concepts from different spaces using mathematical filters to select and

modify how their elements are transferred into the expanded space), and other forms of

conceptual combination in the literature. Exploratory and transformational creativity were

further operationalized beyond Boden’s original abstracted description by Wiggins [149]

to be defined as formal search within a conceptual space (exploratory creativity) as well

as meta-search of conceptual spaces themselves (transformational creativity). The research

presented in this dissertation intentionally includes techniques for computational creativ-

ity that covers combinatorial and exploratory creativity. However, any transformational

creativity exhibited by the system is not intentional.

Process theories of creativity have also included prescriptive or descriptive models

of different stages that are involved in the creative process. Wallas’ idealized four-stage

model of creativity includes preparation (information gathering), incubation (considering

the problem and perhaps abandoning a conscious search for a solution), insight (sponta-

neous awareness of a solution to the problem that was potentially abandoned), and veri-

fication (evaluation to see whether the idea works and then modification or development

as needed). Others have included additional stages such as intimation [151], evaluation

[152], and interactions between explicit and implicit reasoning/knowledge during these

stages [153]. Other stage models include Finke, Ward, and Smith’s Geneplore model

[154], Johnson-Laird’s NONCE model of improvisational creativity [155], and Perez and

Sharples’ exploration-reflection (ER) model (originally applied to creative writing). The

Geneplore model consists of the exploration and evaluation of pre-inventive structures gen-

erated through synthesis, transformation, and exemplar retrieval as a description of the cre-

ative process. The NONCE model for jazz improvisation involves performing both knowl-

edge or constraint-guided generation (neo-Lamarckian approach) and explicit constraint-
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based evaluation after generation (neo-Darwinian approach). The ER model involves alter-

nating sequences of exploration (or generation) of content fragments, followed by a reflec-

tive evaluation of the generated fragments until a satisfactory creative solution is created.

The process models described in this section all commonly perform some repeated or

cyclical stages of generation, followed by evaluation. The research presented in this work

presents creative decision making on the part of an improvisational agent architecture that

can be described as a process model for improvisational creativity. The creative arc nego-

tiation performed in this research follows a cyclical generate and evaluate process, where

the agent’s generation process is constrained by the temporal bounds of the performance,

the agent’s given creative arc, and its set of improvisational response strategies. The agent

directly evaluates each of the candidate responses it generates for novelty, unexpectedness,

and quality fit to a given creative arc target point. In this way, it is close to the hybrid

between neo-Lamarckian and neo-Darwinian approaches that is advocated for and theoret-

ically described in [155].

2.5 Creativity and Intrinsically Motivated Agents

Models of creativity can also serve as motivational drives for agents. For example, curios-

ity, defined here as an intrinsic motivation to discover novel percepts, experiences, expla-

nations, or knowledge [156, 157], is one of the intrinsic motivational drives that can be

used to control learning algorithms. This is exemplified by curiosity-driven reinforcement

learning (RL) (e.g., [158]), where curiosity is used to modulate an agent’s learning pro-

cess. Schmidhuber also describes curiosity as the intrinsic reward mechanism that enables

their agent to learn in the absence of external reward functions in domains such as art and

music. Other intrinsic motivation functions can also be used to modulate agent behavior.

For example, Guckelsberger, Salge, and Colton presents intrinsically motivated agents for

co-creative contexts based on coupled empowerment maximization. This drive is a multi-

agent generalization of empowerment maximization [161], which is the potential for an
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agent to influence or control the outcome in the future given the current situation. Creative

arc selection and negotiation are presented in the latter part of this dissertation and can be

conceptualized as intrinsically-motivated search-based solution generation. In this case,

the target trajectory is the specified creative arc, and the intrinsic motivation is the drive to

follow that arc as best as possible within agent turn time limits. There is a far greater chal-

lenge in the current context compared to the previous approaches due to the near real-time

nature of the improvisational domain.

Evolutionary computing is another area where product-based aspects of creativity serve

as intrinsic and unique motivation for solution search. Objective search [162] is the default

configuration for evolutionary computing for ordinary or search-based creativity applica-

tions and corresponds to a search for high-quality solutions. Objective search involves

performing exploration of the solution space using a population of evolving candidates.

However, in the recent past, novelty search [163] and surprise search [164] have seen much

success in finding solutions more rapidly or robustly than objective search. This is partic-

ularly the case where finding globally optimal solutions requires the algorithm to traverse

deceptive paths through the search space [164]. Most of these systems have yet to inves-

tigate strategies for choosing between novelty and surprise or combining them as the need

may be. It is also technically possible to simulate a similar novelty seeking (curious) agent

in the proposed decision-making model by providing it with a creative arc that has a max-

imal novelty dimension throughout its trajectory, along with setting the agent to ignore (or

alternatively, to accept any value in) the surprise and value dimensions of the creative space.

This also enables the agent to perform surprise search [164] by providing the system with

a creative arc that maximizes the surprise dimension while setting the agent to ignore (or

alternatively, to accept any value in) the other two dimensions. The creative arc negotiation

system can also simulate other hybrid search agents [165].

The creative arc following agent presented in the latter part of this work differs from the

various intrinsically motivated agents mentioned above in the following two ways. Firstly,
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the former directly optimize novelty, surprise, and value dimensions (among others) while

the latter tries to optimize a given meta-level function composed of those same dimensions

in order to follow a creative arc. This is in contrast to the other techniques which encourage

always generating the most creative response. For example, a creative arc that starts with

low novelty and progresses to some peak novelty value before descending again might be

more valuable to an improvisational partner than an agent that tries to do the most novel

action it possibly can every single turn. Secondly, in the former cases there is often a

final output to the search process (when search is stopped eventually) that is evaluated to

assess the effectiveness and quality of the optimization technique, while in the latter case,

the agent’s creative artifacts are experienced by the agent’s improvisational partner (and a

potential audience) all throughout the creative arc making the improvised journey itself the

main creative artifact that is output for and assessed by the audience, not necessarily any

individual action generated by the agent along the way. The agent evaluates the creativity

of perceived and generated each action over the entire course of the performance, though.

2.6 Interactive Narrative and Drama/Experience Management

There is a natural fit between the eventual goal for this research as a path towards em-

bodied narrative improvisation and work in drama or experience management [166, 167]

within interactive narrative [168] research. Both seek to enable co-creation of entertaining

(or desirable) user experiences for participants (and potentially for an audience as well).

The research presented in the latter half of this dissertation on creative arc negotiation

was at least partly inspired by interactive narrative systems such as Mateas and Stern’s

Façade [169], Porteous, Teutenberg, Pizzi, and Cavazza’s Merchant of Venice [170], and

Magerko’s Haunt II [171] as well as Riedl, Stern, Dini, and Alderman’s Automated Story

Director (ASD) [172]. Façade [169] uses annotated story fragments called beats that are

sequenced in response to natural language user inputs with a reactive planner to gener-

ate interactive narrative experiences for the player that possess a clear dramatic arc [173].
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Similarly to Façade, the creative arc negotiation process presented in this work attempts

to structure the improvised performance according to its creative arc. A creative arc can

emulate arcs over a dramatic tension space by adding that as a component to the agent’s

quality heuristics and setting the agent to ignore novelty and unexpectedness in candi-

date actions. However, the creative arc negotiation can also use additional criteria such

as novelty and unexpectedness, to create player experiences that may only be accidentally

possible for an interactive narrative system such as Façade. Porteous, Teutenberg, Pizzi,

and Cavazza’s work describes a visual programming method for drawing dramatic arcs in

order to guide a planning-based interactive narrative experience of the Merchant of Venice.

This is a potentially useful idea that my research could incorporate in the future to enable

the personalization of creative arcs to players or ease the authoring process for non-expert

experience designers. Experience or drama management systems in interactive narrative

like Haunt II [171] and ASD [172] predominantly manage the tension between authorial

intent and player agency in the interactive to preserve the coherence of player or user ex-

periences (see [174] for a survey of the interactive narrative space and [167] for a survey

of drama management techniques). The techniques presented for managing the coherence

of the user’s experience in [167] could be incorporated in the future, once the improvised

performances are closer to narrative than proto-narrative. However, the most significant

problem with using these techniques at the moment is the extreme level of content pre-

authoring required to create structured knowledge for use in these experience management

techniques, which needs to be addressed before they can be integrated into open-ended

movement improv systems.
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CHAPTER 3

THE ROBOT IMPROV CIRCUS

My thesis statement for this dissertation states that “embodied agents that address the im-

provisational action selection problem using ‘creative arc negotiation’ increase perceptions

of enjoyment, agent creativity, and coherence in both observers and participants while per-

forming movement improv with non-experts.” In order to investigate the specific claims

within that thesis statement, this chapter uses the following outline. I first introduce the

Props game problem domain and the Robot Improv Circus installation within which this

problem was studied. I then describe the general solution approach for addressing the

improvisational action selection problem using creative arc negotiation and how that is

implemented within an embodied improvisational agent architecture called CARNIVAL

for enabling embodied agents to perform movement improv with non-experts in the Props

game domain. I then discuss several experiments that aim to validate architectural com-

ponents and systematically evaluate the extent to which creative arc negotiation addresses

the improvisational action selection problem and improves participant and audience per-

ceptions of enjoyment, agent creativity, and coherence as stated in my thesis statement.

3.1 The Props Game Domain

My research investigating the claims in my thesis statement and understanding how to build

embodied improvisational agents to perform movement improv with non-experts and ad-

dress the improvisational action selection problem was situated within object-based gestu-

ral proto-narrative improvisation. This domain is defined as proto-narrative improvisation

performed using gestural interaction with objects in the agent’s environment (see section

1.3). This form of improvisation is exemplified by the popular short-form improv theater

game — the ’Props’ game. The Props game involves improvised movement-based interac-
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Figure 3.1: Two actors playing the Props game from the popular TV show, “Whose Line Is
It Anyway?” [175]

tions between two or more participants using ambiguous props given to them at the start of

a game round to perform recognizable comedic vignettes or singular actions pantomiming

the use of the abstract prop as a real-world or fictional object. For example, when presented

with a prop shaped like a long, thin pole with a small sphere on one end, the first performer

pretending to use it like a baton and twirling it about like a bandleader for a marching

band, then the other performer pretending to play a drum solo using it as a long drumstick,

and continuing on with different props over different rounds of the game. Many different

variants of this game exist in the improvisational theater community with different degrees

(and kinds) of connectedness between performer turns, but the previous definition is the

version used in this research.

The Props game domain was chosen because the challenging nature of the improvi-

sational action selection problem (described in section 3.3) had been highlighted in prior

work [2] and the Props game domain allowed me to focus on that specific problem. Addi-
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tionally, in comparison to domains closer to unconstrained embodied narrative improvisa-

tion, the focus on one-shot actions or short vignettes through prop-based improvisational

interactions represented a simplification of higher-level semantic reasoning and longer-time

scale temporal reasoning for creating a virtual improviser in the domain. Beyond improv

theater, solutions to the Props game problem could potentially be adapted to allow em-

bodied agents to gain new knowledge about unfamiliar objects through interaction. For

example, with the addition of additional evaluation heuristics and goal-oriented reasoning,

the technical approach used in this work could enable agents to learn to use unfamiliar ob-

jects in unfamiliar scenarios according to familiar human norms/customs or use unfamiliar

objects for a specific task (such as improvising a digging tool for disaster recovery). In

summary, the motivation for selecting the Props game was that it allowed me to focus on

the improvisational action selection problem while simplifying the complexity of the prob-

lem to be more feasibly addressable (in comparison to unconstrained embodied narrative

improvisation) and enabling the future extension of this work to other important applica-

tions.

The agent’s actions within the Props game domain consist of gestural content and se-

mantic content. The gestural content represents the positions and orientations of key skele-

tal points of a body over time. The semantic content consists of the semantic interpretation

of the gestural content of an action in terms of the English verb describing the pretend

action being pantomimed as well as the English noun describing the pretend object being

signified with that pretend action. Since the semantic content represents an interpretation

of the gestural content, it constrains the space of valid gestural content to those that can

be mapped to interpretable semantic concepts of pretend objects and pretend actions. Thus

the Props game represents a tangible increase in the complexity of the improvisational do-

main over prior work in purely gestural proto-narrative improvisation [50, 2, 16] due to

the increased semantic constraints imposed over the agent’s generated gestures in order

for them to be interpreted successfully. However, it also does make it easier for the agent
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to communicate with the human user about how to interpret improvisationally generated

actions.

The added semantic constraints in the domain prevent certain computational techniques

(e.g., many forms of data augmentation) from being applied since naive modifications to

the gestural content of an action might not align with the interpretive semantics of the

augmented gestural content, and it is not possible to know about such a change in advance.

Additionally, the semantics necessitate reasoning over additional modalities and content for

communication with the human collaborator. This requires an expansion in the scope of

the improvisation being performed. In contrast to the challenges previously described, the

agent also obtains the opportunity for added clarity through communicating the semantics

of the action. For example, the agent can indicate what both the intended pretend action

and pretend object of a generated action were.

The current domain was studied within an interactive virtual reality (VR) installation

where the Props game could be played between an embodied virtual agent and a human

scene partner. This VR installation is called The Robot Improv Circus [176] and is be-

ing developed using an iterative design process. The installation has human users play

the Props game as a humanoid robot with their humanoid robot stage partner on the main

stage of an all robot circus. The experience was designed to leverage existing user expec-

tations about setting and experience for circuses in contrast to improv theater performance

venues. For instance, common expectations in the USA for circuses that can be lever-

aged to quickly situate a circus experience for many people include that they are held in

colorful big top circus tents with specific circus music and other thematic elements. In con-

trast, improv theater possesses less specific and less commonly held cultural expectations

that can be leveraged by the installation directly. Additionally, the denizens of the virtual

world (human user included) were designed to look like humanoid robots rather than hu-

man characters in order to manage expectations about the realism and verisimilitude of the

computational improviser’s actions and behavior.
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Figure 3.2: The user miming an action with a prop

3.2 The Robot Improv Circus Installation

The Robot Improv Circus [176] is a primarily single participant VR installation for people

to play the Props game with a virtual agent. While the participant is performing in VR,

the audience views the improvised performance from outside the installation through large

screens that form portals into the virtual world. The experience takes place on the virtual

stage of a robot circus, where improv is the main event. Participants take turns with the

virtual agent to mime pretend actions using abstract props as a real-world or fictional object

in imaginative ways in order to create an object-based gestural proto-narrative with the

agent. For example, when presented with a prop that looks like a long, thin cylinder with

a flat disk on one end, one player might pretend to use it like a katana and pantomime

slashing at the air repeatedly. The other agent might then use that prop as a ‘bo’ (long staff)

to pantomime blocking sword slashes or other actions.

The VR experience consists of a trial round followed by a small number of game rounds.

Each performer is given a new prop every round, and each round consists of five to seven

turns. The goal of each round is to create a proto-narrative by taking turns miming actions
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Figure 3.3: A view of the virtual agent miming an action using a prop in the Robot Improv
Circus VR installation

with the prop. Performers hit a virtual buzzer after enacting their actions to signal the end

of their turn.

As an example, after receiving a prop shaped like a flattened cuboid, the VR user might

pretend that the prop is a stovepipe hat and mime putting it on. She then hits the buzzer

to end her turn. The same prop then appears in front of the agent who pretends to comb

its hair using it as a comb. The agent speaks and displays a speech bubble that reads, “I

am combing with a comb” (like in fig. 3.3). The speech and speech bubbles were added

to encourage dialogue and increase the recognizability of the generated mimed actions

after initial validation experiments showed a clear need for improving that aspect of the

generated actions.

The Robot Improv Circus is exhibited in a circus tent (see fig. 3.4). The form and

decor of the installation were designed to evoke a familiar circus aesthetic with circus flags,

themed posters promoting the robot improv circus, and the VR experience itself housed

within the circus tent. The large, colorfully decorated circus tent also seeks to create a

commanding visual presence for the installation [177] to draw people to the installation.
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Figure 3.4: A VR user experiences the Robot Improv Circus in the installation tent

Figure 3.5: A screen displays a view from the virtual audience to human audience members
watching from outside the installation.
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The installation has two large displays outside the circus tent that act as portals for a

real-world human audience to glimpse the virtual circus stage and the performance being

improvised inside VR. They can watch, applaud, and provide positive feedback to partici-

pants in VR through their physical activity. The activity of the human audience is captured

using a video camera and pose extraction from the video feed [178], which then triggers

different kinds of supportive visual feedback in the virtual world according to the amount

of movement in the video frame over time. Their feedback appears in the virtual world

above the virtual audience’s heads as floating emoji (thumbs-up symbols, smiley faces,

clown faces, and hearts) rising up from the robot audience.

3.3 The Improvisational Action Selection Problem

The primary focus of my research in this dissertation is to investigate how addressing the

improvisational action selection problem for embodied improvisational agents that perform

movement improv with non-experts in the Robot Improv Circus affects both participant as

well as audience perceptions of enjoyment, agent creativity, and coherence. In order to do

so, the embodied improvisational agents instantiated in this research must be successfully

able to address the improvisational action selection problem. The improvisational action

selection problem (see Section 1.2.1) refers to the challenging nature of near real-time ac-

tion selection within improvisational domains that have open-ended action spaces as well as

ill-defined goal spaces. Addressing the improvisational action selection problem requires

a balance in the reasoning process that avoids decision paralysis, incoherent behavior, re-

sponses that are less diverse (or too similar), and a lack of qualitative impact on the user’s

experience.

3.3.1 Technical Need

Previous approaches to addressing the improvisational action selection problem have fo-

cused on various techniques to one or a few aspects of the problem. These include con-
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straining the temporal responsiveness of the system [179], constraining the action space

[26], simplifying or enumerating a constrained formalization of the goal space of the do-

main [100], or using simplified stochastic action selection [97]. My research attempts to

address the different components of the improvisational action selection problem together

and thus does not use any of the former simplifications.

The improvisational action selection problem has multiple interacting factors that make

it particularly challenging to address. Firstly, the open-endedness of the action space makes

near real-time performance difficult. Secondly, constraining the action space to make per-

formance more responsive decreases the expressivity, flexibility, and diversity of possible

agent responses [26]. Thirdly, if a simpler or more stochastic action selection mechanism

is used to improve responsiveness, the agent’s behavior seems incoherent over time [2].

Finally, the lack of a well-defined set of goals for the domain prevents the agent from con-

fidently preferring one action over the other, leading to less diverse user experiences across

the different versions of the system [180].

The ill-defined goal space for the improvisational problem domain makes it especially

difficult for commonly used techniques like reinforcement learning (RL) [53], inverse RL

(IRL) [54], or behavioral cloning (BC) [55] to be used easily. RL involves learning a policy

for selecting actions to maximize reward over time and would be difficult to apply due to the

lack of a well-defined reward function. IRL involves the learning of a reward function from

observation and then using RL to solve the learned reward function. BC is the process of

learning and generalizing action sequences used by experts in demonstrations to a new task.

IRL and BC are difficult to apply due to the open-endedness of the action space alongside

the ill-defined goal space. More specifically, this is due to the sample inefficiency of IRL

and the relatively poor performance of BC in unobserved regions of the problem space.
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3.3.2 Solution Approach

The approach used in my research attempts to address as many of the interacting com-

ponents of the improvisational action selection problem simultaneously as possible. It is

desirable for the agent to be able to improvise in near real-time within the open-ended ac-

tion space to produce expressive responses that form coherent behavior over time while

showing perceivably diverse behavior with changes to its action selection within the ill-

defined domain. The following is the technical approach used to achieve these results in

the improvisational agent presented in this research.

The computational approach to embodied improvisation used in this work aims to pro-

duce responsive improvisational behavior that is coherent over time with a demonstrably

perceivable (or identifiable) impact on user experience (in terms of perceptions of enjoy-

ment, agent creativity, and coherence) across different versions of the system. In order

to generate improvisational behavior that satisfies these properties, this research presents

a process called creative arc negotiation, where the agent performs stochastic, inter-

ruptible, strategy-guided action space search to follow a given creative arc through its

creative space of novelty, unexpectedness (as a measure of surprise), and quality (as

a measure of value) (see section 1.4). The agent implements creative arc negotiation us-

ing the following components. Affordance-based action variant generation enables the

agent to perform conditional parameterized generation of action variants based on the

physical attributes of objects that are given to it during improvisation as a way to search

its learned action space. Adapted from prior work [50] and formalized from human impro-

visational practice, the agent uses improvisational reasoning strategies to guide action

space search while negotiating a creative arc. The agent also computationally evaluates

the novelty, unexpectedness (as a measure of surprise), and quality (as a measure of

value) of perceived actions and generated candidate responses to localize them within

the agent’s creative space. The following subsections describe the creative arc negotia-

tion process and the conceptual details of the three components in more detail, however,
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the exact implementation details for each component are described in the corresponding

subsections of the CARNIVAL architecture (see section 3.4).

3.3.3 Creative Arc Negotiation (RQ4)

The agent presented in this research performs creative arc negotiation. Creative arc negoti-

ation is the process of selecting actions over time to best follow a given target trajectory or

’creative arc’ through an agent’s ’creative space.’ The agent aggregates both the human’s

last action and the agent’s candidate actions before comparing it to the target creative arc

in order to select the agent’s next action. Creative arc negotiation aims to provide the user

with a temporally evolving experience that appears coherent over time and qualitatively

different across different creative arcs (or without a creative arc guiding action selection).

The working definition of creativity used in this system is an extension of Boden’s def-

inition of creativity focusing on the novelty, surprise, and value of perceived or generated

artifacts (see section 1.1). A multidimensional model of creativity is used here with the

artifact localized to a point in the space of novelty, surprise, and value. In order to avoid

some of the deeply overloaded semantics of the terms ‘surprise’ and ‘value,’ in practice,

the agent computationally evaluates candidate responses using heuristics of novelty, unex-

pectedness (as a measure of surprise) and quality (as a measure of value) instead. Creative

arcs are, therefore, continuous trajectories through this three-dimensional creative space

that an agent follows over the course of a temporally-extended improvised performance.

An example of a creative arc is illustrated in Figure 3.6

Creative arc negotiation selects actions using a given trajectory over time (the creative

arc) within the creative space rather than always attempting to choose a maximally creative

action. There are several reasons for this. Firstly, the process was inspired by (and general-

ized from) practice-based conventions across several different creative domains about the

use of arcs and trajectories to structure experiences. For example, tension in musical com-

position [181] and improvisation [182] (even pitch for simple cantus firmi [183]) follows
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Figure 3.6: An example creative arc.

well-defined arcs. Similarly, dramatic arcs in several forms of narrative at a high-level rely

on variations of a familiar trajectory involving rising to a climactic point and then falling to

a resolution to deliver their affective payload. In visual art, as well, artists are often taught

to compose their subjects so as to encourage a viewer’s eye to move across the entire com-

position in smooth arcs and trajectories drawn by the visual forms and expectations of the

composition. Secondly, the novelty and surprise components of creative space demonstrate

‘inverted U’ characteristics against perceptual arousal (or preference) [184]. Thus having a

constant value at a maximum could be negative overall.

The improvisational agent is required to perform action selection in an open-ended ac-

tion space in near real-time. Therefore, creative arc negotiation is strategy-guided as an

optimization using strategies formalized from human improvisers that anchor the search in
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the current improvisational context while searching desirable regions of the search space.

Creative arc negotiation is implemented as an interruptible stochastic search where the

agent returns the ’best’ solution until a) the point of interruption in its search or b) it suc-

cessfully finds an action within ε of the target creative space point as a further optimization.

3.3.4 Affordance-based Action Variant Generation (RQ1)

The improvisational agent learns the action space it can use for improvisation within the

Props game from training data representing non-expert demonstrations of pantomimed ac-

tions using props as real-world or fictional objects. A conditional variational autoencoder

[185] architecture was used to learn the distribution of the data set in its latent space in

order for the agent to be able to search or explore that action space (including unseen ac-

tion variants interpolated between the demonstrated examples). Autoencoders [186], in

general, learn a non-linear dimensionality-reduced representation of a given training data

set in their latent space. However, variational autoencoders [187] warp the latent space to

allow smooth interpolations between trained data in the model’s latent space. Conditional

variational autoencoders (CVAE) are variational autoencoders that are conditioned on ad-

ditional features that can be used to partition the latent space and condition generation from

the model’s latent space. The CVAE used in this research was conditioned on the physical

attributes of props (see Section 3.4.3) used to enact the pantomimed actions from the data

set. This allowed the agent to both restrict action variant generation to appropriate props

but also to generalize learned actions to props with similar physical attributes (see section

3.4.3 for more detail).

I refer to the process of generating action variants from the agent’s learned action space

as affordance-based action generation. I define affordance in this work as “a learned tacit

procedural mapping between the physical attributes of an object in the agent’s environment

and that agent’s learned action space that partitions and controls access to that agent’s ac-

tion space.” As described in section 2.3.1, this definition represents a relational mapping
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between the entity (i.e., the physical attributes of the object), its embodied capabilities, and

the set of actions possible with that entity, similar to Şahin, Çakmak, Doğar, Uğur, and

Üçoluk’s [57] definition of affordances. This learned mapping is encoded in the CVAE

model as embodied tacit knowledge; therefore, the action generation proceeds using the

learned model of affordance as defined above. The learned structure of (and relative distri-

bution of action classes in) the model’s latent space make(s) certain regions of the agent’s

action space (i.e., certain action classes) more or less difficult to generate from. It forms

a hybrid interpolation between the absolute affordances (possible vs. impossible actions)

that Gibson [123] describes and the perceived affordances (more vs. less easily perceived

actions) that Norman [124] describes.

The agent learns how to generate action variants for generating candidate actions and

searching its action space by training on a data set of human actions pantomiming the use

of props as real-world or fictional objects. The data, once collected and annotated (see

section 3.3.4), contains the physical attributes of the actual prop, the mimed pretend action,

and the intended pretend object. The gestural content of the percept along with this inter-

preted information jointly form a perceived action in the context of the improvised Props

game performance. The representation of the physical attributes of the prop is discussed

in section 3.3.4. The combination of the pretend action and pretend object represents the

semantics of this action (to a degree) based on the distributional hypothesis [188] that “a

word is characterized by the company it keeps” (especially with their vector representation

presented in 3.4.1).

Object Physical Attribute Representation

A key requirement for playing the Props game is that the given abstract (or unfamiliar)

object/prop has to be interpreted into a real-world or fictional object and then used in such

a way that signifies what object it is being pretended (or imagined) to be through pan-

tomimed pretend actions (e.g., pretending a big sphere is a beach ball and pantomiming the
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act of playing volleyball with it). In order to do this pretense computationally, the agent

needs to be able to map the abstract or unfamiliar props to real-world or fictional pretend

objects and vice versa. Annotated data from human demonstrations provide the agent with

knowledge about what pretend objects and pretend actions are possible in the world and

what embodied knowledge in the form of gestures actually corresponds to using a prop

as a specific pretend object through a specific pantomimed pretend action. In order to ex-

tend and augment the agent’s ability to perform affordance-based action variant generation

an abstracted representation of object physical attributes was formalized. The process for

developing this representation and the actual representation itself are presented below.

The agent’s representation of objects in terms of their physical attributes was arrived

at by reviewing affordance representation schema from robotics research [189, 190, 191,

192]. Varadarajan and Vincze [189] was chosen due to the two-stage process it intro-

duced for mapping object features to primitive actions for agents to use [193]. Since only

a severely limited version of their AffNet 2.0 database was available, the limited set of

feature descriptors used in their work were filtered for feasibility, extended for coverage,

and adapted for suitability with the Props game domain. Their process, however, was not

feasible to use in this system due to its dependence on a fixed set of action primitives for

learning a mapping.

The representation that was developed is as follows. A given prop is represented as

a fixed-length feature vector. The feature values are obtained by decomposing the prop

into a set of parts or components. This is done by comparing them to a fixed set of shape

primitives and a fixed set of operations or deformations that could be applied to it. Since

the focus of this research is not on the automatic segmentation of the prop into parts, this

admittedly subjective decision was considered sufficient for hand annotation. The cho-

sen individual parts of the object are then coded/parsed to obtain a set of binary physical

attributes features representing whether or not that feature is present/applicable to that part.

The set of physical attributes features developed in this project includes a part’s shape
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primitive, size, thickness, flatness, concavity, taper, rigidity, curvature, hole size, and whether

a digit/symbol is signified. As mentioned earlier, the feature set was chosen by extending

the geometric mapping features from affordance representation ontologies such as [189].

After annotating the physical attributes feature values for each part, the features for each

part are then aggregated by summing them together and normalizing them using the max-

imum count for any feature in the data set. This encoded value represents the normalized

counts of each physical attribute feature for the prop across all parts and is a fixed-length

vector representation of the object. For example, a barbell-shaped prop might be two flat-

tened spheres connected by a long, thin cylinder. The process for encoding the physical

attributes of objects could be automated in future extensions of this work using computer

vision tools.

The extended set of features developed in this work for object representation was used

to annotate a set of objects used by performers while playing the Props game on the Whose

Line Is It Anyway? [175] TV show. A subset of eighty props was then hand-annotated using

the developed feature schema out of the total number of props used on the show. Out of

the eighty props that were annotated, twenty props were then selected for use in the Robot

Improv Circus according to the following process. Fifteen props were chosen that had

the highest aggregated individual feature counts as a rough measure of the total number

of actions that could be performed with them. The remaining five props were chosen to

accommodate props that had features which were absent in from the already chosen fifteen

in order to boost the diversity of actions and actions possible with the set of props. The

decision to choose props with high feature counts was made to potentially enable users

to perform a larger and more diverse set of actions with these props. This decision itself

was not specifically evaluated, but each prop (as well as the total set of chosen props) has

empirically and qualitatively been shown to generate many different pretend objects and

pretend actions (see section 3.5).
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Learning Actions From Non-expert Demonstrations

The agent’s model of affordance-based action variant generation was learned from repeated

iterations of batch learning from non-expert demonstrations as a data set collected from five

non-expert improvisers pantomiming pretend actions using the provided props as pretend

objects. Non-expert improvisers were used as a data source to better reflect the target

population for the improvisational experience created using this improvisational agent (for

more, see section 1.3.2). After the demonstration sessions were completed, the data were

processed by research staff using a separate annotation tool (see image 3.7) along with the

help of recorded videos of the improvisational data collection session. After annotating the

pretend action and pretend object as well as segmenting the start and end of the actions

in the data collection session using between five and seven annotators, 893 mimed actions

of length from 3.3 seconds (minimum length chosen) to 10 seconds (maximum length

chosen) were curated as the initial data set. Each training data point (each action) was

represented using the gesture vector and semantic vector presented in section 3.3.4. This

data set has increased over time, but for a better comparison of results, later experiments

were conducted using the same initial data set.

3.3.5 Improvisational Response Strategies (RQ2)

Improvisational response strategies extend prior work in LuminAI [50] and represent domain-

independent procedural knowledge about the different reasoning strategies that human im-

provisers use during improvisation. While performing creative arc negotiation, these strate-

gies enable human improvisers or improvisational agents to anchor their search for a suit-

able response to the current (or recent) improvisational context and reduce the size of their

response search space and facilitate response generation in near real-time. The strategies

themselves were compiled using literature search from jazz improvisation [58] and were

adapted for use with dance [194] and improv theater [176].

The set of improvisational response strategies developed in LuminAI is extended in
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Figure 3.7: The annotation tool used to segment and annotate collected data.

this work. The strategies explored in this work include Mimicry, Transformation, Combi-

nation, Similarity-based Retrieval, and Pattern Projection. Other strategies for modulating

the novelty, surprise, and value directly have also been proposed in initial ideation but re-

main future work. All of the strategies detailed in this research operate within the latent

space of the CVAE generative model utilizing vector relationships that exist between points

in that latent space. This provides a consistent mechanism for generating different action

variants from a uniform representation and model. Some added detail for each strategy

is given in the following paragraph, but specific implementation details in the CARNI-

VAL architecture are provided in the corresponding section of the architecture (see section

3.4.5).

Mimicry is the process of copying an observed action for interpretation and replay to for

connecting to another improviser. Transformation consists of interpreting observed actions

and then changing them according to relationships between previous actions. Combination

involves interpolation of multiple recent actions as a way to generate variation while retain-
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ing connections to prior context. Similarity-based recall can generate a space of gestures

from most similar to least similar from the latent space. Finally, pattern projection is the

process of using relationships between recent actions from the human and agent to project

a source action to a target action so that it adheres to the given relationships.

3.3.6 Computational Models for Evaluating Creativity (RQ3)

The process of creative arc negotiation relies on the agent’s ability to evaluate the creativity

of perceived actions (and generated action candidates) computationally so that the agent

can select responses that follow a target creative arc over the course of the improvised

performance. Therefore this research contributes a set of computational models for eval-

uating creativity. The specific working definition of creativity used in this work follows

Boden’s definition of artifact creativity stating that creative actions perceived or generated

by the agent are characterized by their degree of novelty, unexpectedness (as a measure of

surprise), and quality (as a measure of value). See section 3.4.4 for more information.

Framework For Creativity Evaluation Models

The models used in this research can be analyzed and potentially separated from other

related computational models of creativity evaluation from the literature using a general

framework. The framework specifies several dimensions along which the agent’s approach

to creativity evaluation are specialized due to the specific constraints of movement im-

prov between a human and virtual character (as well as a potential audience). The general

framework developed in this work is listed below.

1. The perspective being evaluated: There are three separate perspectives for judging

the creativity of improvised interactions for an improvised performance/interaction

between a virtual character, human collaborator, and an audience. The choice would

depend on the main goal of the interaction, whether to optimize the quality of agent’s

learning and data acquisition, the user experience of the human collaborator, au-
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dience enjoyment, or some combination of these (ideal for an improvised human-

computer performance).

2. The degree of dynamism: This is the amount that the evaluation changes over time

due to the experiences of the agent. A static/unchanging model would be fixed (with-

out accounting for habituation or other changes over time), while a more dynamic

model might adapt offline in between every improvisational session. The most desir-

able model adapts online over the course of the ongoing improvisational session.

3. The role of feedback: The model may not use feedback at all to improve its scoring

over time. Alternatively, the model might utilize explicit feedback from the audience

(e.g., applause) or collaborator (e.g., post-interaction surveys). The feedback could

also be implicit through metrics like interaction duration or facial expression counts

if explicit feedback can’t easily be collected. Feedback is usually desirable unless

the expertise of the system is far greater than the user.

4. The relative expertise of the system: A fledgling system that has little data or expe-

rience cannot expect to match human ratings of novelty and expectation and should

treat the user’s experiences as a superset of its own (e.g., an open-ended narrative

improv system). A system that has collected data over its lifetime or through mas-

sive datasets can potentially surpass the human in terms of experience (e.g., a recipe

generation system mining from large online recipe databases). It might then need

to localize novelty and surprise estimation to the neighborhood of the user’s experi-

ences.

5. The relative domain-dependence of the model: Individual components of models

for evaluating creativity can be considered on a spectrum from domain-independent

to domain-dependent. For example, a theoretical model for evaluating novelty that

uses aggregated distance measures between percepts in a given perceptual space can

be considered largely domain-independent since the model could be applied to any
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domain where percepts can be compared in perceptual space. On the other hand,

a model for evaluating the quality (as a measure of value) would need to be more

domain-dependent due to the high specificity of quality heuristics to a domain. In

practice, all models lie on a spectrum somewhere between the two extremes, since

some domain-specific knowledge is needed to operationalize the former and some

domain-general processes can be used to apply the latter across domains.

Evaluating Novelty

Novelty of a perceived or generated action is evaluated in the agent using a distance-based

comparison to other comparable actions that the agent has encountered before or is aware of

(adapted from [141]). The distance-based comparisons are performed on both the gestural

and semantic components of actions (see Section 3.4.4 for more detail about novelty cal-

culation). Since the selection of all comparable actions to a specified action in the general

case is a difficult problem, a naive solution is to compare against all actions perceived or

generated by the agent. However, due to the growth of the agent’s experience over its life-

time, this problem is approximated by comparing the specified action against its K nearest

neighbors with K set empirically. The use of K nearest neighbors approximates the prob-

lem since, for truly novel actions, even the K nearest neighbors would be distant, while

for commonly experienced actions, the K nearest neighbors would be at a short aggregate

distance.

Evaluating Surprise

The agent computes the unexpectedness of a certain action as a measure of the surprise

experienced by the agent. There are two general classes of methods that are used for com-

puting unexpectedness in the related literature (see section 2.4). Impact-based surprise

computes the impact of an observation on the agent’s beliefs or expectations. Deviation

from expectation is another class of models for computing surprise where distance-based
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methods are used to compare the observed action and the most expected action(s) for a

given situation. Both types of surprise are calculated in this agent to provide a balance be-

tween the two approaches. As discussed above in the framework for comparing creativity

evaluation models (see section 3.3.6), this particular evaluation model for unexpectedness

retains an exclusively agent-centric perspective. Future work could add additional perspec-

tives or use personalization to tailor the perspective of the model over time to the participant

or audience.

The distributions of expectation used in the unexpectedness evaluation models are con-

ditioned on the physical attributes of the object (or prop) given to the agent (or human) due

to the lack of data about the probabilities of pairs of actions over time in this particular

domain as well as the feasibility of collecting this data. Future work could use interactive

learning to approximate this distribution over time as the agent explored sequences with

more of the actions in its action space. This would be an important step for adding narra-

tive or causal coherence to the improvisation in order to apply this to future domains with

added causal structure like full-scale embodied narrative improvisation.

Evaluating Value

Value is strongly dependent on the context, culture, and domain of the evaluation being

performed and is a concept that is complex and overloaded in its use (see section 1.1 for

definitions). Therefore, the agent evaluates the quality of perceived or generated actions as

a measure of value using a set of heuristics specified for the Props game domain (it ignores

all explicit reasoning about the societal or cultural value in its judgments of quality). Qual-

ity is more domain-dependent than novelty or unexpectedness (see discussion in section

3.3.6) and requires domain-dependent heuristics for its calculation.

A characteristic problem with improvisational domains like movement improv, in gen-

eral, or the Props game, in particular, is the lack of a well-defined goal space or easily-

specified objective function(s). Therefore, the heuristics defined for the agent in the Props
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game domain are considered weak heuristics that are necessary but not sufficient and can

thus only evaluate an incomplete region of the goal-space for the domain. Currently, in

the agent, the two heuristics used to measure the quality of perceived or generated actions

are the smoothness of a performed action, and the recognizability of a performed action

in terms of the pretend object and pretend action that is signified by it (see section 3.4.4

for more detail). These heuristics compute the quality of an action both in terms of its

gestural quality (though recognizability evaluates the gestural component in relation to the

semantic component of an action). The different components are equally weighted in the

current iteration of the model but can have their relative weighting modulated according to

empirical results or even personalized to user preference in the future.

3.4 CARNIVAL: Creative ARc Negotiating Improvisational Virtual Agent pLat-

form

The robot improviser character that plays the Props game with VR users in the Robot

Improv Circus installation is controlled by the CARNIVAL (Creative ARc Negotiating

Improvisational Virtual Agent pLatform) agent architecture. CARNIVAL uses creative arc

negotiation to address the improvisational action selection problem for embodied agents

that perform movement improv. The architecture consists of three high-level components

— perception, reasoning, and action — that work together to enable the agent to improvise.

CARNIVAL’s perception module receives VR tracking data of the human’s gestures in

the virtual environment in the form of user-segmented gestures and interprets it in terms

of the real/fictional pretend object being portrayed, the pretend action being pantomimed

with that pretend object, and its location in various dimensionality-reduced spaces. The

reasoning module reasons in real-time about what action from its open-ended action space

best fits the target location on the agent’s creative arc, given the previous improvisational

context up till that point and how much of the performance remains. The action module

receives the generated action from the reasoning module and plays it back in the virtual
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Figure 3.8: The CARNIVAL agent architecture that implements creative arc negotiation
(see section 3.4.2 for process details). Lighter regions refer to future work.

world in a realistic manner by walking to the prop, picking up the prop, playing the gen-

erated action with that prop, dropping the prop when finished, walking to the buzzer, and

hitting the buzzer to end its turn.

3.4.1 Perception: Interpreting Human Gestures

The perception module receives a gesture consisting of a temporal sequence of human pose

data constituting a user-segmented gesture. Each frame of pose data is extrapolated from

the instantaneous values of the three hardware-tracked points of a standard VR system

(head, left hand, and right hand). The extrapolation is performed using inverse kinematics

over the user’s VR player avatar (the character used to represent the user in the virtual

world). The end result of this process is world-space positions and rotations of the user’s
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Figure 3.9: The CARNIVAL agent architecture with the perception module highlighted.

22 skeletal joints (head, neck, pelvis, left shoulder, right shoulder, etc.). In addition, the

states of the VR controller buttons, as well as the position and rotation of the virtual prop

on stage, are recorded in the perceived gesture.

Perceived gestures are vectorized into a 27000-dimensional or a 16000-dimensional

vector representation. Both vector representations consist of concatenated frames of fea-

tures extracted from the pose data. The 27000-dimensional vector uses 30 features per

frame, extracted from the perceived gesture at 90 frames per second (FPS) for 10 seconds.

The 30 features per frame consist of the normalized position (3D Cartesian coordinate rep-

resentation) and normalized orientation (4D quaternion representation) of the user’s head,

left hand, right hand, and pelvis as well as the Boolean states of two VR controller but-

tons representing whether the user was trying to grab an object at that point. The 16000-

71



dimensional vector uses 35 features per frame, extracted from the perceived gesture at 45

FPS for 10 seconds. The 35 features per frame consist of the normalized position (3D

Cartesian coordinate representation) and normalized orientation (4D quaternion represen-

tation) of the user’s head, left hand, right hand, and pelvis, as well as the normalized po-

sition (3D Cartesian coordinate representation) and normalized orientation (4D quaternion

representation) of the given prop. Zero padding values are added at the end for 250 places

to round the total vector length to 16000. Additionally, if gestures are shorter or longer

than 10 seconds, they are zero-padded at the end of the resulting vector or trimmed to the

maximum duration, respectively.

Inferring Pretend Object and Pretend Action

Perceived gestures are interpreted by classifying them into pretend actions and pretend

objects. The classification is done, at the moment, using a relatively simple K Nearest

Neighbors classification approach. First, the dimensionality of the gesture vector is re-

duced to a two-dimensional point in the latent space of the generative model used to per-

form affordance-based action generation (see Section 3.4.3). The projected point is then

used to query an RTree data structure [195] (a space partitioning tree with efficient dy-

namic loading that is widely used in spatial querying) for its nearest K neighbors (with

K set empirically), consisting of previously seen and generated gestures. The RTree data

structure is used as an optimization to perform K nearest neighbors search in logarithmic

time complexity. The interpretation of a gesture in terms of an inferred pretend object and

pretend action can be done using either a simple majority of its neighbors’ object and ac-

tion labels or by weighting the majority using their relative distances to the projected query

point. The pretend action and pretend object are an English verb and an English noun

(usually with high concreteness [196] respectively. The pretend action and pretend object

are represented as 300-dimensional vectors from a pre-computed word embedding [197].

The respective vector interpretations of the gestural and semantic content of the action can
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be dimensionally reduced using parametric T-SNE models [198] and are used later in the

creativity evaluation process (see Section 3.4.4).

The RTree [195] that is used for nearest neighbor queries is initially pre-loaded with

a data set of human-annotated actions [see Section 3.3.4] in order to avoid a cold start

problem with the pretend action and object inference. These actions were annotated by

members of the research team using a special annotation tool [See picture 3.7] while listen-

ing to participants talking through their improvisational performances with the given props.

Since the RTree grows over the course of the installation as the agent’s experience grows, it

can be saved to a database for the agent’s next run. The increase in elements also increases

the size of K needed for the labeling process with the increase in RTree elements.

3.4.2 Reasoning: Creative Arc Negotiation

Interpreted human actions from the Perception module are received by the Reasoning mod-

ule in order to generate the agent’s response. The reasoning module uses creative arc nego-

tiation to generate an appropriate response, addressing the improvisational action selection

problem. This process is represented as an interruptible stochastic search through the cre-

ative space for a generated action that is nearest to the target point from the agent’s creative

arc for that turn or the agent’s time remaining for the turn runs low.

Creative arc negotiation requires the following components to work together to enable

the negotiation process.

1. The interruptible search process described above.

2. A parameterizable action variant generator that is able to search the agent’s action

space for candidate action variants.

3. A set of improvisational response strategies that can heuristically guide the agent’s

search to potentially important regions of the action space depending on the impro-

visational context till that point in the performance.

73



4. A set of computational models for localizing a generated action variant in the agent’s

creative space.

5. An optional process for selecting improvisational strategies according to the gradient

between the agent’s previous and current target points on the creative arc.

Creative Space and Creative Arc Representation

As described earlier (see Section 3.3.3), the agent’s creative space is reductively adapted

from Boden’s definition of creativity as the novelty, surprise, and value experienced while

evaluating a creative artifact. The agent’s three-dimensional creative space consists of nov-

elty, unexpectedness (as a measure of surprise), and quality (as a measure of value), with

each dimension having values measured in the closed interval [0.0, 1.0]. The creative arc

is represented in CARNIVAL as a temporal sequence of creative space target points for

the agent to use when selecting generated responses. The initial interpretation of a given

creative arc is to treat it as a set of evenly spaced key points whose values can be linearly

interpolated between based on the total number of turns for a given performance of the

Props game.

Creative Arc Negotiation As Search

Creative arc negotiation is implemented as search through the agent’s learned action space

to find a generated action variant whose location in the agent’s creative space is within an

empirically set distance threshold ε of the current interpolated target point from the creative

arc for the agent’s turn. The search is interruptible so that if the agent’s remaining time

for the turn is equal to the maximum possible generated action variant length (currently

10 seconds), the nearest action till that point is returned as the agent’s chosen response.

The agent can perform creative arc negotiation either by considering the creative space

locations of only its own actions or that of the human participant as well. In the latter case,

the target point from the creative arc is compared with the halfway interpolated creative
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Figure 3.10: The actual negotiated creative arc in CARNIVAL.

space locations of the human participant’s action and the agent’s current generated action

variant being considered.

3.4.3 Reasoning: Action Variant Generation

The process of searching through the agent’s learned action space is operationalized us-

ing a parameterizable action variant generator. The action variant generator is trained on

a data set of mimed human actions using props as real-world or fictional objects. A deep

generative model is used to perform affordance-based action variant generation (see Sec-

tion 3.4.3) by learning a parameterized mapping between the formalized physical attributes

of the props used to mime the actions in the data set and the action space represented by

the data set. The generative model’s latent space is conditioned on the given prop’s phys-
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Figure 3.11: Improvisational response strategies used for guiding search through the
agent’s action space.

ical attributes and parameterized by a search control vector that can be varied to generate

different actions mapped to the given prop’s physical attributes. The iterative process of

affordance-based action variant generation and evaluation by variation of the generative

model’s control vector is thus how the agent’s action space can be searched in order to

select responses to negotiate a creative arc.

DeepIMAGINATION

A deep generative model was used in CARNIVAL to perform affordance-based action vari-

ant generation, i.e., to learn the mapping between a prop’s physical attributes and the set of

actions that were shown to be possible to perform given props with those physical attributes.
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Figure 3.12: Optional strategy selection.

The conceptual model design was named DeepIMAGINATION for Deep IMprovised Ac-

tion Generation through INteractive Affordance-based exploraTION [199] and was based

around a general conditional variational autoencoder (CVAE) [185] architecture. Several

variants of the actual model architecture were implemented using several convolutional and

recurrent alternatives.

CVAEs consist of an encoder and decoder with conditioning happening on both the

inputs to the encoder and decoder. In this case, the encoder and decoder were both con-

ditioned on the physical attribute vectors of the props used to perform the actions us-

ing input concatenation. The encoder reduces the high-dimensional input into a low-

dimensional latent space, and the decoder reconstructs a sampled latent vector back into

a high-dimensional output from the same space as the input. Both convolutional neural
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Figure 3.13: Local exploration of the agent’s action space using DeepIMAGINATION.

networks (CNN) and recurrent neural networks (RNN) were used to implement variants

of the DeepIMAGINATION module. One of the convolutional architecture variants is de-

picted in Figure 3.17. This particular variant uses 1-dimensional convolutional layers and

1-dimensional transposed convolutional layers in the encoder and decoder, respectively.

Dropout layers were also used for regularization. A recurrent CVAE variant is described

later.

Each CVAE variant was implemented in TensorFlow [200] and trained with the ADAM

optimizer [201]. Each CVAE variant was trained on 900+ mimed pretend actions of length

ranging from 3.3 to 10 seconds collected from five novice improvisers playing the Props

game within a VR data collection environment (see previous Section 3.3.4 for details of

the data collection). Therefore given an input distribution X , a latent distribution z and a
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Figure 3.14: Action selection from the explored set.

conditioning distribution c, each CVAE variant was trained using the CVAE loss function

defined as:

L(X, z, c) = E[log P (X|z, c)] + DKL[Q(z|X, c) || P (z|c)] (3.1)

In other words, the loss function is the sum of the decoder’s reconstruction loss and the en-

coder’s Kullback-Leibler divergence [202] loss, both conditioned on the physical attributes

distribution. Training the network is made possible by using the re-parameterization trick

(with mean µ(X, c) and diagonal covariance matrix Σ(X, c)) [187]:

z = µ(X, c) + Σ
1
2 (X, c) ε, where ε ∼ N (0, 1) (3.2)
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Figure 3.15: The negotiated creative arc in the agent is updated.

During the generation of action variants, the model’s latent space is repeatedly sampled

at specific locations provided by CARNIVAL’s improvisational response strategies (see

Section 3.4.5), based on the current improvisational context occurring. The DeepIMAG-

INATION module generates action variants conditioned on the physical attributes of the

given prop. Generated action variants are evaluated by CARNIVAL’s creativity evaluation

models (see Section 3.4.4).

A total of eight architecture variants were designed and trained, including four convolu-

tional models and four recurrent models. The variants were implemented for performance

evaluation and selection (see evaluation experiments in Section 3.5). The convolutional ar-

chitectures only differed in their input vector representations and resultant layer dimension-

ality. The four recurrent models used either a vanilla RNN architecture or an architecture
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Figure 3.16: The CARNIVAL agent architecture with the DeepIMAGINATION module
highlighted.

based on the MusicVAE network [203]. The two groups of RNN variants were also trained

on different input vector representations.

Convolutional Variants

It is helpful to think of the different input vector representations ((27000, 1), (16000, 1),

(900, 30), and (450, 35)) for convolutional models in terms of the number of channels in

the input data. The data was first represented with one channel, that is, 27000 and 16000

dimensional vectors were reshaped to (27000, 1) and (16000, 1) dimensional tensors, re-

spectively. In another representation, the number of channels corresponded to the number

of features per body pose frame - i.e., 27000 dimensional vectors were reshaped to (900, 30)

tensors while the 16000 dimensional vectors were reshaped to (450, 35) tensors (discard-
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Figure 3.17: A convolutional variant of the DeepIMAGINATION architecture with
(27000, 1) shaped input gesture and 2D latent space. General CVAE architecture shown
in upper right quadrant. Zoomed-in views of encoder and decoder in upper left and bottom
respectively. Dropout layers not shown but applied between each convolution layer and
between each transposed convolution layer.

ing the zero-padding). The outputs from the decoder were 27000 and 16000 dimensional

vectors depending on the input vector representation.

Recurrent Variants

The RNN versions of CVAE were implemented using Long Short-Term Memory (LSTM)

layers. Both the encoders and decoders of the Vanilla RNN implementation include sin-

gle layers of bidirectional LSTMs that represented information for each frame concate-

nated with the physical attributes vector. Based on results from Roberts, Engel, Raffel,

Hawthorne, and Eck, where vanilla RNN-based decoders sometimes had poor sampling

and reconstruction performance, a hierarchical RNN architecture for the decoder was de-

signed based on their MusicVAE architecture Roberts, Engel, Raffel, Hawthorne, and Eck.

In this variant, the latent vector z is first passed through a fully connected layer to initialize

the state of the Conductor layer, which is composed of a unidirectional LSTM layer. The

output of the conductor layer is then passed as initialization for the bottom LSTM layers,
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where each frame vector from Conductor layer, concatenated with the output of previous

bottom layer LSTM, is used as initialization for the bottom layer LSTM of next time inter-

val. The outputs of each bottom layer LSTM are then concatenated and flattened to match

the input tensor shape.

3.4.4 Reasoning: Computationally Evaluating Creativity

Figure 3.18: The CARNIVAL agent architecture with the computational models for evalu-
ating creativity highlighted.

Perceived human actions and generated action variants from DeepIMAGINATION are

localized to the agent’s creative space and compared to find the response that is the lo-

cal best fit with the current target point on the agent’s creative arc. This process involves

computationally evaluating the creativity of the perceived or generated actions. As de-

scribed previously, the working definition of creativity in this work is the degree to which
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a perceived or generated action is novel, surprising, and of high value from the evaluating

agent’s perspective. Therefore, the task of computationally evaluating creativity is divided

into the subtasks of evaluating the novelty, unexpectedness (as a measure of surprise), and

quality (as a measure of value) of a perceived or generated action variant from the agent’s

perspective.

The operationalized definition of creativity in this work uses unexpectedness and qual-

ity as (imperfect) measures or proxies for surprise and value. Unexpectedness is used in

the definition of creativity instead of surprise because the requirements for surprise as it is

defined in this work specify it to 1) be an affective reaction and 2) cause a reaction pro-

portional to the confidence with which a violated expectation is held [204]. As a result,

the function over unexpectedness that is evaluated in the improvisational agent (see sec-

tion 3.4.4) cannot technically be called surprise because it is not generated through any

validated computational model of affect yet (such as one based in appraisal theory [205]

or the somatic marker hypothesis [206]) and because the evaluation does not yet formally

threshold the evaluated unexpectedness according to the measured confidence of the expec-

tation. Both these shortcomings of the unexpectedness evaluation model will be addressed

in future work.

The agent measures the quality of perceived and generated actions. However, the mea-

sured quality cannot necessarily be considered equivalent to value due to 1) the complex

nature of defining quality metrics for the open-ended, ill-defined domains studied in this

work, 2) the complex nature of ‘usefulness’ when dealing with the societal context of in-

teractive installations or performative improvisation, and 3) the often complex functional

relationships between the quality and value [207, 140]. These shortcomings of the work are

planned to be addressed in future iterations of this work by studying 1) how people relate

to this work as participants and observers, 2) practice-based and observational measures of

quality within this creative domain, and 3) how it fits within the societal context of improv

theater at multiple levels of analysis in the wild.
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Evaluating Novelty

Novelty has been used to describe how new, unique, or original a sensation, percept, or

experience is to an agent [208, 163, 209]. Through this definition, sensory percepts that an

agent experiences can be evaluated for their novelty. However, generated items that arise

from an agent’s cognition can also be evaluated similarly as though perceptually experi-

enced by the agent.

Novelty is measured in this research as the aggregated difference between a percept

and other comparable experiences that an agent has already experienced (see 1). Using

the framework discussed in section 3.3.6 about desirable properties of creativity evaluation

models, this definition has the following properties. It is dynamic, since the experienced

novelty changes over time, depending on the agent’s experiences. It is evaluated from the

perspective of the agent since the comparisons are made based on the agent’s experiences.

It does not incorporate external feedback to the agent to tune the model with human interac-

tion. It is also designed to work most efficiently when the agent is relatively inexperienced

compared to its human collaborators. Finally, the model is largely domain-independent

though it does need domain-specific knowledge for both converting percepts into a spatial

representation for applying distance-based comparisons and aggregating component nov-

elty scores together to give a total novelty score. Future work would be needed to incorpo-

rate human feedback about the novelty evaluations of the model to improve its believability

and to change the model to function more efficiently as it gains expertise from interacting

with many human collaborators over time.

Novelty evaluation in CARNIVAL is modeled using the following algorithm.

It should be noted that finding the K nearest neighbors is used in algorithm 1 as an

initial solution to the problem of selecting the set of comparable elements against which

to compare the percept. The value of K was set empirically by using the elbow method

[210]. This method was used on a graph of the absolute acceleration of the mean of mean

distances between every K nearest neighbors in a collected data set of size N for values of
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Input: Percept X, Integer K, and RTree<PerceptVector> R
Result: The general novelty score for an observed percept X

PerceptVector XVector := DimensionalityReduce(X);
PerceptVector[] NearestKNeighbors := FindKNearestNeighbors(XVector, K, R);
Distance[] NearestKDistances := GetDistances(XVector, NearestKNeighbors);
Double Novelty := Mean(NearestKDistances);
R := UpdateRTree(XVector);
Return Novelty;

Algorithm 1: ComputeNovelty(. . . )

K ranging from 2 to N
2

.

CARNIVAL’s novelty model evaluates perceived and generated action variants. Since

an action is composed of gestural content and semantic content (in the form of the pretend

action and pretend object), novelty values are calculated for each of the three components,

aggregated together, and scaled to the closed interval [0.0, 1.0]. The exact process for each

type of novelty proceeds as follows (see 1).

Gestural content in an action is represented as either a 27000-dimensional or 16000-

dimensional vector. Since nearest neighbor searches are conducted over the gesture vectors

to find its K nearest neighbors, the high-dimensional vectors representing gestural con-

tent are dimensionality-reduced using parametric T-SNE [198]. Parametric T-SNE is a

manifold-learning approach to non-linear dimensionality reduction implemented using a

neural network encoder trained on a parametric T-SNE loss function. The parametric T-

SNE model is advantageous over newer T-SNE dimensionality-reduction implementations

that are faster such as Barnes-Hut T-SNE [211] since the model [198] does not have to

be repeatedly retrained to work on new data, though the learned transformations would be

increasingly distorted over time without retraining.

The K nearest neighbors of the dimensionality-reduced gesture vector are found using

an RTree data structure [195] that performs the query in logarithmic time complexity. The

mean distance between the evaluated percept and its K nearest neighbors is used as the

gestural novelty component score. This score component is aggregated with the semantic
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novelty component score and scaled to get the final novelty score.

Semantic content in an action consists of two English words representing the action’s

pretend action and pretend object, for example, ‘looking through’ and ‘kaleidoscope’).

These are represented as two 300-dimensional word vectors from a pre-computed word

embedding [197]. The dimensionality of each word vector is reduced using a similar PT-

SNE model as the gestural content but trained on an English word data set. The dimen-

sionality reduced output vectors are used to query two separate RTree data structures [195]

that are populated with previously experienced pretend actions and pretend objects for the

respective sets of K nearest neighbors. The respective mean distances are calculated from

these sets of neighbors. These pretend action and pretend object novelty score components

are averaged to get the semantic novelty score components.

The total novelty score is calculated by computing the mean of gestural and semantic

novelty component scores. The resulting total score is adaptively scaled to get a final

score in the closed interval [0.0, 1.0]. Adaptive scaling is performed so that the expected

minimum and maximum values of the source domain can be adjusted according to the

observed minimum and maximum values generated by the creativity evaluation models.

Evaluating Unexpectedness

The creativity evaluation models in CARNIVAL measure the unexpectedness of a per-

ceived or generated action variant as a proxy for the surprise that an agent might encounter

in these situations. Unexpectedness is defined in this research in terms of the degree that an

experience deviates from the agent’s expectation for that experience. The degree of surprise

is also proportional to the confidence of the agent’s belief or expectation, i.e., the higher the

agent’s confidence in a belief or expectation, the higher the agent’s surprise if it is violated

[212].

Surprise differs from novelty in subtle but significant ways. Novelty is a global measure

of the difference between an experience being evaluated and other comparable experiences,
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regardless of what an agent might expect that experience to be like. In contrast, surprise is

the difference between an experience being evaluated and what it expects that experience

to be, regardless of how different that experience is to other comparable experiences. For

example, let us imagine a hypothetical situation where an agent is shown different images

of animals from the African savanna and is asked to identify the animal. In that context, if

the agent is shown an animal that it has seen examples of many times, say a giraffe, it can

correctly identify the animal as a giraffe. The animal is not novel to the agent. Additionally,

given that the agent is expecting to see images of animals from the African savanna, the

image of the giraffe is not surprising to it. The agent is then shown an image of a newly

discovered animal called an ‘eleppo’ which looks like a combination of an elephant and

a hippopotamus. The eleppo is different from all the other animals that are potentially

comparable to the eleppo and is thus novel to the agent. The eleppo is also quite different

from all the animals the agent was expecting to see in an African savanna context, therefore,

the eleppo is surprising to the agent.

The pattern of showing the hypothetical agent a familiar animal and then an unfamiliar

animal created from combining other animals is repeated several times, continuing the

example. The agent has built up expectations about many aspects of the game by this time,

including the categories of animals it is shown each turn, the shifting context of each round

of the game, and specifically that the second round of each pair will see an animal combined

from two other animals in the African savanna. At this point in the game, the combination

animals the agent is shown in every even-numbered turn is still different from every other

comparable animal it has seen before and is thus novel to the agent. However, the agent

has correctly learned to expect that it will see an animal that is made up of a combination

of other animals found in the African savanna and is thus not surprised by the novel animal

when it sees an image of that animal.

Continuing the example further, in the next even-numbered turn, however, the agent

sees a familiar giraffe again. The image of the giraffe violates the agent’s expectation of
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seeing an unfamiliar combination animal like the eleppo. Therefore, the agent is surprised

at seeing the familiar image of the giraffe. The image of the giraffe is not novel to the agent

though since it has seen many images of giraffes like that one in the past.

The preceding example clearly demonstrates two scenarios where novelty and surprise

can differ significantly. However, differences between surprise and novelty are often not as

clear cut. Additionally, it is not always the case that all expectations that are violated are

based on temporal patterns. In the Props game that is played within the Robot Improv Cir-

cus installation, unexpectedness can be generated from atemporal sources of expectation

violation. In that case, props that are given to the player or agent can convey expectations

for their usage as certain pretend objects over others. For example, a large prop that consists

of two spherical parts joined together by a long thin cylindrical part, would be more com-

monly expected to be used as a cartoon barbell rather than a comically large swizzle stick.

These expectations are atemporal in nature depending on the implementation of the agent’s

models, i.e., not necessarily dependent on the temporal ordering of actions observed by the

agent. However, since the degree of unexpectedness is proportional to the confidence with

which a belief is held or expectation is generated, beliefs that are reinforced or weakened

over time may give rise to more or less unexpectedness if violated, as in the case of an

agent that has a dynamic model of unexpectedness implemented. For a detailed taxonomy

of dimensions along which to inspect the various kinds of expectation used for evaluating

surprise, see [213].

In the literature, approaches to measuring surprise or unexpectedness have been divided

into those that measure the impact of an experience on an agent’s prior beliefs and those

that directly measure the deviation of an observed experience from the expected outcome

or experience [213]. This research uses both methods to compute an aggregated score for

the unexpectedness of a perceived or generated action variant.

The agent’s model for evaluating unexpectedness can be analyzed using the framework

introduced in section 3.3.6. The agent’s model of unexpectedness is dynamic since it is
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updated according to the agent’s changing beliefs. Therefore, the agent would be less

surprised over time if it repeatedly observed the initially unexpected percept in a given

context. The model measures unexpectedness from its own perspective rather than that of

the human collaborator or a potential audience. While the model does update over time

through belief updation, it does not yet tune its outputs according to external feedback in

order to potentially make its evaluations more realistic. Additionally, the model is currently

designed to be more efficient for situations where the agent has less expertise than a human

collaborator or audience, such as an interactive learning context where the agent improves

over time. The agent’s model of unexpectedness is also largely domain-independent and

could be applied to other domains in a straightforward manner with appropriate knowledge

about what distributions of beliefs would be relevant for the model in the new domain.

The agent’s general model for evaluating unexpectedness uses a combination of Bayesian

Surprise [59] and direct computation of ‘deviation from expectation’ [141] (DFE). This

model can be seen in algorithm 2. The model computes unexpectedness over the gestural

and semantic content of a perceived or generated action variant. The two scores are then

adaptively scaled to the closed interval [0.0, 1.0], as with the novelty score components,

and the mean is returned as the total unexpectedness score for the agent.

Input: Percept X, Integer KBS , Integer KDFE , and RTree<PerceptVector> R
Data: ProbabilityDistribution PerceptDistribution
Result: The unexpectedness score for a given percept X computed from Bayesian

Surprise and deviation from expectation methods

PerceptVector XVector := DimensionallyReduce(X);
Double BSScore := ComputeBSScore(XVector, KBS , R, PerceptDistribution);
Double ScaledBSScore := Scale(BSScore, 0.0, 1.0);
Double DFEScore := ComputeDFEScore(XVector, KDFE , PerceptDistribution);
Double ScaledDFEScore := Scale(DFEScore, 0.0, 1.0);
Double Unexpectedness := Mean(ScaledBSScore, ScaledDFEScore);
R := UpdateRTree(XVector);
PerceptDistribution := UpdateDistribution(XVector);
Return Unexpectedness;

Algorithm 2: ComputeUnexpectedness(. . . )
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The component of the agent’s unexpectedness that is computed based on the impact

that an experience has on the agent’s prior beliefs is based on Bayesian Surprise [59] and

can be seen in algorithm 3. Bayesian Surprise is the aggregated difference between a

probability distribution of the agent’s beliefs before (prior distribution) and after (posterior

distribution) observing some percept, and the difference between the prior and posterior

distributions is calculated using KL Divergence [202]. According to this measure of sur-

prise, the higher the change on a prior belief due to observing some evidence, the higher

the surprise. Bayesian Surprise is computed across the gestural and semantic content of an

action variant separately and summed together.

Input: PerceptVector XVector, Integer KBS , RTree<PerceptVector> R, and
ProbabilityDistribution PerceptDistribution

Result: The unexpectedness score for a given percept X computed using the
Bayesian Surprise method

ProbabilityDistribution Prior := GetPriorDistribution(PerceptDistribution);
ProbabilityDistribution Temp := Clone(PerceptDistribution);
Temp := UpdateDistribution(XVector);
PerceptVector[] NearestKNeighbors := FindKNearestNeighbors(XVector, KBS , R);
Temp := UpdateDistibution(NearestKNeighbors);
ProbabilityDistribution Posterior := GetPriorDistribution(Temp);
Double BSScore := ComputeKLDivergence(Prior, Posterior);
Return BSScore;

Algorithm 3: ComputeBSScore(. . . )

The other component of unexpectedness computed in the agent’s model is a direct mea-

sure of the degree to which the gestural and semantic content of a perceived or generated

action variant differs from the most expected set of action variants. The algorithm for calcu-

lating this, in general, is shown in algorithm 4. The process is repeated for the gestural and

semantic components of the action variant, and the resulting scores are summed together.

Many different probability distributions could have been used to compute the Bayesian

Surprise and DFE components of unexpectedness. However, at least initially, the agent’s

expectations are conditioned on the given prop rather than on other temporal distribu-

tions (like the temporal expectation of which pretend action could follow the last one in
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Input: PerceptVector XVector, Integer KDFE , and ProbabilityDistribution
PerceptDistribution

Result: The unexpectedness score for a given percept X computed using the
deviation from expectation method

PerceptVector[] MostExpectedKPerceptVectors :=
FindKMostExpectedPercepts(PerceptDistribution, KDFE);

Double DFEScore := GetMeanDistance(XVector, MostExpectedKPerceptVectors);
Return DFEScore;

Algorithm 4: ComputeDFEScore(. . . )

a narrative). Specifically, the generated expectations are based on the conditional prob-

ability distributions — P(dimensionality-reduced pretend action vector|prop physical at-

tributes), P(dimensionality-reduced pretend object vector|prop physical attributes), and

P(dimensionality-reduced gesture vector|prop physical attributes). In the future, other con-

ditional probability distributions could also be useful for calculating the unexpectedness

component scores. These could include probability distributions such as P(dimensionality-

reduced pretend action at time=tn|dimensionality-reduced pretend action at time=tn−1)

leading to more temporally or causally coherent action variants. However, these distri-

butions are not currently used, due to a lack of data at present.

Evaluating Quality

The agent evaluates the quality of a perceived or generated action variant using a set of

domain-dependent heuristic functions as a simplistic measure of its value. At present, this

set of heuristics consists of the smoothness of the gestural content of an action variant and

the recognizability of the gestural content of an action variant (recognizability from the

agent’s perspective). The current two heuristics were chosen by considering the aesthetics

of a performed gesture and by consulting domain experts in improv theatre for their sug-

gestions as well. They could be expanded in the future to include measures of coherence

or even humor (given a computational model of humor). The general algorithm combining

the smoothness and recognizability components can be seen in algorithm 5.
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Input: Action A, Integer K, and RTree<GestureVector> R
Result: The quality score for a given action A computed from smoothness and

recognizability heuristic functions

GestureVector GVector := DimensionallyReduceGesture(A);
SemanticVector[] SVectors := DimensionallyReduceSemantic(A);
Double SScore := ComputeSmoothnessScore(GVector);
Double ScaledSScore := Scale(SScore, 0.0, 1.0);
Double RScore := ComputeRecognizabilityScore(GVector, SVectors, K, R);
Double ScaledRScore := Scale(RScore, 0.0, 1.0);
Double Quality := Mean(ScaledBSScore, ScaledDFEScore);
R := UpdateRTree(GVector);
Return Quality;

Algorithm 5: ComputeQuality(. . . )

The agent’s model of quality evaluation can be analyzed using the framework stated

in section 3.3.6. The quality evaluation model is less dynamic than the novelty and unex-

pectedness evaluation models since the smoothness component measures the same intrinsic

property of all gestures that it evaluates. However, the smoothness component can’t be used

to filter out gestures that score low in that heuristic since the agent might require a lower

smoothness gesture during improvisation or the recognizability might boost quality to a re-

quired level according to the current creative arc. In contrast, the recognizability heuristic

is dynamic because its estimation of recognizability would change over time based on the

relative frequencies of observed gestures for each semantic class (classes of pretend actions

and pretend objects) that a gesture could be labeled with as well as their relative distances

to each other. The agent evaluates quality purely from its own perspective rather than from

that of a human collaborator or audience. The quality evaluation model does not incorpo-

rate external feedback at the moment, though future versions could feasibly use a trained

classifier to recognize aesthetic quality based on feedback from collaborators or audience

members. Like the previous models described in this work, the agent’s models of quality

evaluation are also based on an agent with less experience than its human collaborators or

audience members. Unlike the previous two models, the agent’s quality evaluation model

is heavily domain-dependent. This is because quality itself, unlike novelty and unexpect-
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edness, is heavily tied to the conventions, rules, and boundaries of the specific domain in

which it is evaluated.

The smoothness of an action variant is shown in algorithm 6. The smoothness heuristic

function measures the average jerk [214] in the motion of each joint in a gesture across

three different windows sizes for aggregating the motion. This results in three vectors of

movement at different scales of resolution per joint of the agent’s pose frame. In physics,

jerk is computed as the third derivative of a positional vector (first two being velocity and

acceleration). Therefore smoothness is computed as the inverse of the mean jerk across all

joints for an agent across three resolutions of movement. An inverse scaling is used in the

heuristic since high jerk equates to low smoothness.

Input: GestureVector GVector
Data: Integer LocalWindowSize, Integer RegionalWindowSize, Integer

GlobalWindowSize
Result: The quality score for a given gesture vector GVector computed from the

smoothness of GVector

DoubleVector[] JointVectors := GetJointVectors(XVector);
Integer[] WindowSizes := [LocalWindowSize, RegionalWindowSize,
GlobalWindowSize];

DoubleVector MeanJointJerkValues;
for Integer WindowSize in WindowSizes do

DoubleVector[] AvgPoolJointVectors := AvgPoolVectors(JointVectors,
WindowSize);

DoubleVector JointJerkValues := ComputePerJointJerk(AvgPoolJointVectors);
MeanJointJerkValues := IncrementalMean(JointJerkValues, 1);

end
Double SScore := Mean(MeanJointJerkValues);
Double ScaledSScore := InverseScaling(SScore);
Return ScaledSScore;

Algorithm 6: ComputeSmoothnessScore(. . . )

The recognizability of an action variant is shown in algorithm 7. Recognizability is

intended to calculate the degree to which a gesture can be recognized as a specific pre-

tend action or pretend object. This is calculated by finding the K nearest neighbors to the

observed gesture. From this set, the mean distance between the observed gesture and all
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gestures with pretend action and pretend object interpretations matching the observed ges-

ture (intra-class mean distance) are found. The mean distance between the observed gesture

and neighbors with pretend action and pretend object interpretations that don’t match the

observed gesture (inter-class mean distance) are found next. The ratio between the intra-

class and inter-class mean distances is inverse scaled and returned as the recognizability

score.

It may not immediately be obvious how the scaled inverse of the intra-class to inter-

class mean distance ratio predicts recognizability. Examining the heuristic, this function

scores low when the inter-class mean distance is low, and intra-class mean distance is high.

This implies that the nearest gestures that do not match the observed gestures’ semantic

interpretation are nearer to the observed gesture than the nearest gestures that do match

the observed gesture’s semantic interpretation. The opposite holds for a high score of this

heuristic, i.e., previously observed gestures that match the observed gesture’s semantic in-

terpretation are nearer to it than previously observed gestures that do not. This implies that

in the former case, the gesture does not ‘look like’ other gestures that have been interpreted

the same way, and in the latter case, it does.

The models for evaluating novelty, unexpectedness, and quality return scores in the

closed interval [0.0, 1.0]. The scores form a three-dimensional point in the agent’s evalua-

tive creative space. The scores are used by the creative arc negotiation process to find the

closest generated action variant to the next target point on the creative arc.

3.4.5 Reasoning: Improvisational Response Strategies

Creative arc negotiation could be performed with an exhaustive search of generated action

variants in the creative space. However, given that a primary characteristic of improvisa-

tion is the necessity to return satisfactory responses in near real-time with a potential loss

of optimality (if optimality were even possible in movement improv), the creative arc ne-

gotiation is necessarily guided by heuristics to seek out potentially lucrative regions of the
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Input: GestureVector GVector, SemanticVector[] SVectors, Integer K, and
RTree<GestureVector> R

Result: The quality score for a given gesture vector GVector computed from a
recognizability heuristic

GestureVector[] NearestKNeighbors := FindKNearestNeighbors(GVector, K, R);
SemanticVector[] NearestKLabels := LabelGestures(NearestKNeighbors);
GestureVector[] LabelMatchGestures := FindLabelMatches(NearestKNeighbors,
NearestKLabels, SVectors);

GestureVector[] LabelMismatchGestures :=
FindLabelMismatches(NearestKNeighbors, NearestKLabels, SVectors);

Distance[] MatchDistances := GetDistances(GVector, LabelMatchGestures);
Double MeanMatchDistance := Mean(MatchDistances);
Distance[] MismatchDistances := GetDistances(GVector, LabelMismatchGestures);
Double MeanMismatchDistance := Mean(MismatchDistances);
Double RScore := MeanMatchDistance ÷MeanMismatchDistance;
Double ScaledRScore := InverseScaling(RScore);
Return ScaledRScore;

Algorithm 7: ComputeRecognizabilityScore(. . . )

search space as quickly as possible. These heuristics are encoded in CARNIVAL through

improvisational response strategies.

Improvisational response strategies were introduced earlier in this chapter as formally

encoded strategies used by improvisers to generate near real-time responses during impro-

visation by bounding their search to the current improvisational context. Searching the

agent’s action space in CARNIVAL is performed by varying the parameters to the Deep-

IMAGINATION module. Therefore, improvisational response strategies are encoded as

strategies for generating parameters for DeepIMAGINATION based on the current impro-

visational context. The generated action variants are then evaluated using the creative space

localization models.

Mimicry

Mimicry is a response strategy where the agent observes the human’s action, interprets it

in terms of its learned action space, and attempts to generate the action it just saw the

human perform. In contrast to prior work in the LuminAI agent [50], where the agent
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Figure 3.19: The CARNIVAL agent architecture with the improvisational response strate-
gies highlighted.

could playback the human’s gesture exactly, CARNIVAL agents map the observed action

to a point in its learned action space (i.e., as a point in DeepIMAGINATION’s latent space),

and then try to recreate or regenerate it using DeepIMAGINATION. Therefore, the agent

will be able to mimic the user’s action to a high degree of accuracy only if it has been trained

on actions similar to what the human just performed. The converse of that statement is also

true, and the action variant CARNIVAL generates through mimicry may not look exactly

like the human action depending on its novelty to the agent. This is more realistic in terms

of what a human might expect from another human improviser in terms of both process and

result since it is unlikely that a human would be able to perfectly recreate an action that is

largely novel to them on their first try as well. The lack of exact replay is further justifiable,

given that CARNIVAL is designed to be retrained regularly on obtaining more data from
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human participants over time.

Combination

Combination is a response strategy where the agent can interpolate between N actions

that are similar (but not the same) to the current action from the agent’s past experience

and combine them together to create a new action variant. When N = 1, this is a purely

episodic recall response strategy, i.e., being reminded of a similar action from the agent’s

recent experience and no combination is actually done since there is only 1 action. How-

ever, when N > 1, this is a unique strategy where the agent is reminded of N actions, and

they are combined together into a novel action variant. When N = 2, the strategy performs

an interpolation in latent space similar to other generative models [203, 215]. Combination

for N > 2 is achieved by finding the centroid of the coordinates of the N similar (but not

the same) actions in DeepIMAGINATION’s latent space and then generating the resulting

combined action variant.

Transformation and Pattern Projection

Transformation as a response strategy was previously used in prior work as changes that

could be made to a gesture according to the specific aspects of the gesture and other func-

tional changes in the gesture’s form itself. In CARNIVAL, transformations are performed

by doing vector operations between coordinates in the latent space being used to generate

actions from DeepIMAGINATION.

The use of the DeepIMAGINATION latent space as a representation of the agent’s

learned action space is convenient for implementing action space search as well as for the

application of response strategies as search control. However, the latent space in Deep-

IMAGINATION is not directly interpretable, i.e., each dimension does not correspond to

meaningfully higher-level or usefully abstracted dimensions. Therefore, it is currently dif-

ficult to map interpretable semantics onto the latent space dimensions in order to directly
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generate transformations based on them like in prior work [50]. Transformations are thus

based on patterns that are calculated between previous human-agent turns.

Pattern projection can directly be applied by finding a vector between the actions in the

previous human and agent turns in DeepIMAGINATION’s latent space and then translating

that vector to the coordinate of the human’s current action in the latent space. This applies

the properties of the spatial relationship between the two actions in the previous turn to

the current human action. Baseline pattern application without any other transformations

added to that pattern is thus translation in the vector space. Patterns can also be found by

looking at the current action perceived by the agent, searching for the closest action from

the agent’s episodic memory (temporally backwards), and then looking at how that action

was responded to from the episodic memory, calculating the vector relationship between

those two actions and projecting that vector out from the current action in DeepIMAGINA-

TION’s latent space.

Additional affine transformations can be added to a translated vector in the latent space.

These can include rotation, reflection, and magnitude scaling of the pattern or spatial re-

lationship vector. Reflection is interpreted as applying a complementary (if not opposite)

pattern to the current action. Further research is required to better understand the inter-

pretations of spatial relationships or patterns in the latent space and to find interpretable

dimensions that can be mapped onto the latent space.

Similarity-based Recall

A simplified and constrained version of Similarity-based recall was previously presented in

prior work [50]. In prior work, this strategy was restricted to finding the most similar ges-

ture in an interpreted space. CARNIVAL’s version of the similarity-based recall response

strategy is a significant advancement over the previous version of this strategy due to the

parameterizable nature of similarity in this search. The agent can recreate the most similar

(but not same) recent action as its response, equivalent to how this was implemented in

99



prior work. However, it can also recreate the least similar (or most dissimilar) recent ac-

tion. It can even generate an action variant that is arbitrarily in between the two extremes of

most similar and most dissimilar. Currently, the most similar and most dissimilar strategies

are used.

Generating Novelty, Unexpectedness, and Quality

Previous experience with the strategies in the LuminAI architecture [2] had qualitatively

indicated some trends in how people perceived the generated gestures from the different

response strategies. Mimicry seemed to be perceived as low novelty, but participants de-

scribed the experience of seeing the character repeat their actions very positively (high

value from the user’s perspective). Transformations tended to be perceived with varying

degrees of quality but had high estimations of novelty. The moment when characters did

not repeat a user’s actions but did something different was also rated as highly unexpected.

Similarity-based Recall and Pattern Application in LuminAI were perceived similarly to

Mimicry (lower novelty and higher quality), though they also created moments of unexpect-

edness in participants when they realized that the agent was not only performing mimicry.

These trends from prior work in LuminAI need to be examined in the future and deter-

mined whether they transfer to the CARNIVAL architecture and the Robot Improv Circus

installation as well. Strategies unique to or approached differently in CARNIVAL, such

as combination, pattern application, and similarity-based recall are currently not known in

terms of their predicted effects on participants for evoking novelty, unexpectedness, and

quality. Other strategies for CARNIVAL were also proposed in [176] for modulating the

perceived novelty, surprise, and value directly and could be added in the future.

Strategy Selection

Strategy selection was originally meant to be a part of CARNIVAL as a way to further

optimize the creative arc negotiation process. It was originally meant to be implemented
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Figure 3.20: The CARNIVAL agent architecture with its naive implementation of strategy
selection as parallel strategy execution highlighted.

using a learned policy mapping between the known set of strategies and the desired direc-

tion of movement in the agent’s creative space between the agent’s current location and the

next target point on the creative arc. However, for the initial iteration of the CARNIVAL

architecture, it was decided that all strategies would be executed in parallel and strategy

selection would be applied in the future.

3.4.6 Action: Performing Agent Responses

The action module in CARNIVAL receives a selected action variant once the creative arc

negotiation process is completed. The action module uses a finite state machine, inverse

kinematics (IK), and path planning over a navigation mesh (or navmesh) to perform the

action variant more realistically on stage. These features are implemented using off the
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Figure 3.21: The CARNIVAL agent architecture with the action module highlighted.

shelf tools or included features within the Unity3D game engine.

Realistic Action Playback

The action module is implemented as a finite state machine (FSM) that receives actions

and plays it back. When it is the agent’s turn in the round/game, and the reasoning module

outputs an action variant for performance, the action FSM first transitions from an idle state

to a walk-to-prop state. The agent uses path-planning over a navmesh to walk to the current

location of the agent’s prop for that turn. When at that location, the FSM then transitions

to a pick-up-prop state where it uses IK to move its hand down to the prop on the ground,

attach the prop to its hand, and stand back up using IK again. The FSM then transitions to a

walk-to-first-location state, and the agent navigates back to the location on stage where the
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first frame of the action variant will start. The agent then plays back the action variant using

IK, with the prop attached to the correct hand or controlled by the gesture representation

directly. After finishing playback of the selected action variant, the FSM transitions to a

walk-to-stage-center state and the agent walks back to the center of the stage. Then the

FSM transitions to a drop-prop state, and the agent drops the prop by detaching it from

its hand. The FSM then transitions to a walk-to-buzzer state, and the agent navigates to

its buzzer. The FSM then transitions to a hit-buzzer state, and the agent uses IK to hit the

buzzer. This ends the agent’s turn, and the FSM switches back to an idle state. For the

duration of the human’s turn, the agent turns to watch the human’s performance.

3.5 Evaluation

The research presented thus far in the chapter described the Robot Improv Circus installa-

tion and the CARNIVAL architecture as tangible boundary objects for studying the claims

made in my thesis statement. My thesis statement stated, “embodied agents that address

the improvisational action selection problem using ‘creative arc negotiation’ increase per-

ceptions of enjoyment, agent creativity, and coherence in both observers and participants

while performing movement improv with non-experts.” My research questions served as

a guiding outline for evaluating the claims made in my thesis statement over the course of

this research and are repeated for convenience as follows.

RQ1 How can an agent perform parameterized action variant generation from a

learned action space based on the physical attributes of a given object?

RQ2 How can an agent improvisationally search its action space based on previous

experience and the current improvisational context?

RQ3 How can an improvisational agent computationally evaluate the creativity of

perceived or generated actions in near real-time in terms of their novelty, unex-

pectedness (as a measure of surprise), and quality (as a measure of value)?
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RQ4 How can an embodied agent select actions to negotiate a given creative arc in

order to address the improvisational action selection problem while performing

movement improv with non-experts?

RQ5 How does addressing the improvisational action selection problem while per-

forming movement improv with non-experts affect both observer and partici-

pant perceptions of enjoyment, agent creativity, and coherence?

The following list describes the formal evaluation plan for the research questions re-

peated above in order to evaluate the claims made in my thesis statement systematically. I

first describe two experiments to validate the implementations of affordance-based action

variant generation (RQ1) and the creativity evaluation models (RQ3) in CARNIVAL. I then

describe the next set of three experiments and aim to show that my thesis statement holds

with the following chain of evidence that they provide.

1. The improvisational action selection problem is successfully addressed by creative

arc negotiation as an approach.

2. Embodied agents addressing the improvisational action selection problem using cre-

ative arc negotiation can perform movement improv with non-experts.

3. Embodied agents addressing the improvisational action selection problem using cre-

ative arc negotiation and performing movement improv with non-experts can be in-

teracted with as a participant and experienced as an audience member.

4. Embodied agents addressing the improvisational action selection problem using cre-

ative arc negotiation can perform movement improv with non-experts so that percep-

tions of enjoyment, agent creativity, and coherence increase for both participant and

audience member.
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3.5.1 Validating Affordance-based Action Variant Generation in CARNIVAL

DeepIMAGINATION is the parameterizable action generator for conditionally searching

the agent’s action space in the CARNIVAL architecture based on the physical attributes of

objects given to the agent (see Section 3.4.3). It was designed with the aim of enabling

an agent to search a learned action space in order to generate believable, recognizable,

and high-quality pretend action variants with similar abstract props. Therefore, validating

the component involved investigating whether the architecture allows an agent to generate

action variants that were believable, recognizable, and high-quality compared to human

actions? This was determined using a survey-driven study of non-experts evaluating human

and computer-generated actions from DeepIMAGINATION in the criteria of believability,

recognizability, and quality.

Methodology

Multiple surveys were created using Amazons Mechanical Turk platform that assessed the

believability, quality, and recognizability of four data sets related to actions from Deep-

IMAGINATION (human actions, agent mimicry of human actions, near variants of mim-

icked human actions, and far variants of mimicked human actions). The experiment was

conducted to address the evaluation question described above. Each of the four data sets

consisted of 40 gestures performed by a robot character in VR across 20 props from the

Robot Improv Circus. A GIF was recorded of the robot character performing two actions

with each prop for a total of 160 actions across all four datasets. These GIFs were then

evaluated by remote workers on the Mechanical Turk platform.

The human-generated data set comprised actions performed by a human in VR with a

robot avatar. This set of human gestures was then passed through DeepIMAGINATION

in various conditions to generate three additional data sets of actions with the same robot

avatar. The direct output of the autoencoding process made up the agent mimicry data set

as it represented the agent’s interpretation of human gestures. The third and fourth data
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sets were made up of near and far action variants (respectively) of the agent mimicry data

set. They were generated by sampling points at a radius of 0.1 and 2.0 away (respectively)

from the mimicry gestures in the CVAE model’s latent space with the exact values for radial

distance determined empirically. The same robot avatar performed these actions as well.

Each survey required the participant to watch either one or two recorded GIFs of actions

(depending on the task involved) from one of the four datasets and answer questions about

the GIF(s). In each survey, the human data set made up the human actions, and the other

three data sets made up the computer-generated actions. There were 80 participants for

tasks with single GIFs (absolute ratings) and 60 participants for tasks with two GIF com-

parisons (comparative rating in a forced-choice configuration). Each participant worked on

20 GIFs out of the entire data set of GIFs.

Believability: In order to assess the believability of the actions, two survey tasks were

given to Mechanical Turk workers. In the first survey, each participant watched a single GIF

(absolute rating configuration) at a time and answered whether they believed the action was

performed by a human in VR or generated by a computer program. The comparison was

made in order to evaluate whether participants could tell the difference between computer-

generated (CG) actions and human actions between each data set. The hypothesis was that

differences would be seen between the discrimination accuracy of the generated actions

according to which of the three CG data sets was being evaluated (indicating that at least

some groups of CG actions were as believable as human actions). Notably, if the partici-

pant’s accuracy at this task was low, it meant that the generated action was easily mistaken

for human action, and thus, the generated action variants were believable.

A second task was conducted that asked people to compare a human action from the

human actions data set with a CG action from one of the other three datasets and asked

the participant to identify which action they believed was generated by a computer. The

test helped to clarify whether participants thought that computer-generated actions were

human actions when directly comparing the two. The test also indicated how believable
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the CG GIFs were. If the participants had low accuracy in determining the identity of the

CG GIF, it would indicate that the CG GIFs were believable. The hypothesis was that there

would be significant differences in recognition accuracy across groups, indicating that the

CG actions were mistaken for human actions in some of the groups.

Recognizability: The recognizability of the actions in the four data sets was assessed

in terms of how accurately identifiable both the pretend object and pretend action were

that the character in the GIF was portraying (no written annotations were given to them in

the GIF, of course). The survey asked participants to select what they believed the robot

character was most likely enacting from a list of three options. The options were similar to

stabbing with a sword or eating with a spoon. High accuracy in identifying the actions and

objects shown in the GIF would indicate that the portrayal was recognizable overall. Our

hypothesis was that comparable recognition accuracy across groups would be seen showing

that the CG action sets were equally recognizable to human actions.

Quality: Participants were asked to determine the quality of the GIFs through two

tasks. In the first one, participants were asked to rate the smoothness and quality on a 5-

point Likert scale by looking at a GIF and evaluating it on its own. They were also asked

to state what their criteria were for quality in this domain before rating any GIFs and were

asked to use those criteria strictly during rating.

The second task was designed as a comparative rating, forced-choice configuration task.

Participants were asked which action of the two they thought was smoother and of higher

quality. Each participant was asked to define quality themselves at the beginning of the

survey and to strictly use those same criteria while rating the GIFs for quality later on.

The two measures (smoothness and user-defined quality) were used together to assess

the overall quality of each action in both tasks. If smoothness and user-defined quality were

high for each action, it would indicate that the overall quality was high. Our hypothesis was

that there would be comparable quality and smoothness ratings across groups.
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Results

Believability: The task of detecting whether a given GIF was human performed or CG was

treated as a binary classification task between the performance of the participants on the

human data set in comparison to their performance on each of the other three data sets. The

lower the participant accuracy, the stronger would be the evidence that the CG actions were

believable. In order to analyze the participant responses, a confusion matrix was created

for the four sets of comparisons: human vs. all CG, human vs. agent mimicry, human

vs. near variant, and human vs. far variant. The F1 scores for the four conditions were:

0.5251, 0.7154, 0.7163, and 0.671. Additionally, the Matthews Correlation Coefficients

for the four conditions were: 0.3308, 0.4237, 0.426, and 0.2912, respectively (all weak

positive correlations).

The results above showed that the believability of the CG actions was comparable to

that of the human actions in the absolute rating task when human vs. all CG or human

vs. far variant conditions were considered. The fact that far variants scored the highest in

comparison to agent mimicry and near variants was surprising since it was the least close

to the corresponding human point in the latent space. However, it possible that it was close

to some other human point and thus ended up generating believable actions.

Responses from the comparative rating, forced-choice configuration study of believ-

ability between two action GIFs were assessed by treating the task as a multi-class classifi-

cation problem. The options given to participants were – CG action on the left, CG action

on the right, both CG actions, and neither CG actions. As a reminder, poor participant

performance on this task would be indicative that the CG actions were highly believable.

A four-class confusion matrix was created for the four responses possible, once each

for human vs. agent mimicry, human vs. near variant, and human vs. far variant. In that

order, the F1 scores were 0.8157, 0.7925, and 0.7678, respectively. The Matthews Cor-

relation Coefficient was calculated, respectively, to be 0.5414, 0.5938, and 0.4931 (strong

positive correlations). Both results were calculated using micro-averaging due to the multi-
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class condition. The result indicated that when compared directly side-by-side to a human-

performed action, participants were able to identify the human-performed action with rel-

atively high accuracy, indicating that the actions were not as believable as desirable when

compared directly against a human-performed action.

Recognizability: Participants of the recognizability experiment were asked to identify

the actions performed by robot characters when assessing the recognizability of actions.

Their mean accuracy (standard deviation in parenthesis) was determined across the differ-

ent data sets ordered as human, agent mimicry, near variant, and far variant as 0.64 (0.26),

0.37 (0.24), 0.41 (0.23), and 0.33 (0.27). The median accuracy values for the same groups

were 0.66, 0.4, 0.4, and 0.30. This outcome is a negative result that shows that recog-

nizability for CG actions was comparable to random guessing, while human-performed

actions were twice as likely to be recognized correctly.

A Shapiro-Wilk [216] test found a non-normal distribution for the accuracy data. There-

fore, a Kruskal-Wallis omnibus rank-sum test [217] was computed on the data. The re-

sults were found to be significant, and the null hypothesis was rejected with a p-value

= 5.505771 · 10−17. A Dunns test adjusted with Benjamini-Hochberg FDR showed that all

the negative result relationships between the human data and the CG data were significant

(all p-values < 0.019641).

Quality: For the comparative rating, forced-choice configuration study of the smooth-

ness and quality of each action, the medians were calculated for the Likert scale responses

and chi-squared tests were calculated for the human data compared to each of the three data

types to see if there were significant associations between the types of data and the Likert

scale responses for smoothness (or high quality respectively). For absolute smoothness,

the median values for human, agent mimicry, near variants, and far variants were 4, 2, 2, 3

on a 1 - 5 scale from not at all smooth to very smooth. The chi-squared test reported sig-

nificance with χ̃2 = 304.9299 and a p-value < 0.00001. For absolute user-defined quality,

the median scores reported for the same data sets were 4, 3, 3, 3 on a similar scale from
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very poor quality to very high quality. The chi-squared test reported significance with χ̃2 =

265.4731 and a p-value < 0.00001.

When assessing the comparative rating, forced-choice configuration study of smooth-

ness and quality for each action, the percentage of results that were considered smoother (or

higher-quality respectively) was recorded along with chi-squared tests that were calculated

for human data compared to each of the three data types. The test was conducted to see if

there were significant associations between the types of data and the selection of the human

or computer action as more smooth (or high quality respectively). For smoothness, human

data was chosen as smoother 75.63% against agent mimicry, 77.54% against near variants,

75.30% against far variants, and 76.14% overall against all CG actions. There were no sig-

nificant differences found between the groups, with χ̃2 = 0.6701 at a p-value < 0.05. For

user-defined quality, the percentage of responses where human data was chosen as higher-

quality was 73.58%, 78.26%, 76.74%, and 76.14% for the same ordering as smoothness.

There was no significant association found either, with χ̃2 = 2.6957 at a p-value < 0.05.

Discussion

Survey-driven observer-ratings were used to validate the implementation of the affordance-

based action generation module, DeepIMAGINATION, within the CARNIVAL architec-

ture. The experiment was conducted by collecting observer-ratings of video clips of the

agent performing different types of action variants in order to evaluate the believability,

recognizability, and quality of the action variants with respect to each other. Ratings were

performed either on each variant by itself or by directly comparing human and computer-

generated variants together.

The survey-driven observer-rating study of believability, recognizability, and quality

produced mixed results. The action variants generated showed high believability in the ab-

solute rating configuration (single video clip rating) with users confused about whether it

was a human or computer-generated clip roughly half the time. The believability of gener-
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ated action variants in a comparative-rating configuration was less stellar with much higher

accuracy for humans correctly identifying the two categories. This is understandable be-

cause the absolute rating case is a more realistic condition for evaluation since there would

only be one action at a time in the actual Props game setting where this would be used. The

comparative-rating configuration could then be considered a ceiling on performance for the

agent’s generation.

The results for recognizability were clearly negative. In the task, users were match-

ing the pretend object and pretend action to three options each. The results for human

actions were more than double that of generated action variants. Additionally, the rater’s

recognition accuracy for generated action variants was as low as random guessing perfor-

mance. As a result of the low recognizability ratings from observers, the agent was given

a speech bubble and an audible robotic voice (using text-to-speech) that announced what it

was attempting to portray using template-based dialogue generation. An example can be

seen in figure 3.3. A casual pilot interaction and experience design study with three par-

ticipants was conducted with this feature both activated and deactivated, resulting in every

participant corroborating the high utility of the speech bubble and audio voice for added

participatory recognizability.

The quality of the generated action variants was evaluated in terms of smoothness and

user-defined quality. These values were comparatively high for all types of evaluated data in

the absolute rating configuration. However, there was a definite surprise in the comparative

rating version of this task. In the comparative rating configuration for comparing relative

quality between action GIFs (which was expected to be the performance ceiling condition),

25% of the time when comparing both smoothness and user-defined quality, raters preferred

the generated action variant over the human action. This was a surprising result since it was

expected that close to 0% of raters would choose the generated actions in this comparative

condition.

There were certain methodological limitations to this study, as well. Firstly, the task of
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evaluating generator outputs against each other (or by themselves), completely outside of

any context, would have been quite unusual for many human evaluators without possess-

ing a good reference point or comparison for what the expected bounds of performance

were in this task (though perhaps less so for those familiar with prop-based improv the-

atre). Therefore, the first set of results of the human evaluation task may not have truly

reflected the agent’s performance within the context of the entire CARNIVAL architecture.

Therefore, further studies have also been conducted to elaborate on the findings and lim-

itations of this first study, culminating in observer rating and in-person evaluation of the

entire CARNIVAL architecture as an improvisational partner.

3.5.2 Validating Creativity Evaluation Models in CARNIVAL

The agent’s computational models for evaluating the creativity of perceived as well as gen-

erated actions in terms of their novelty, unexpectedness, and quality were studied through a

set of validation experiments. The experiments were conducted using non-expert observer

ratings through a set of survey-driven tasks. The aim was to show that the implementa-

tion of the computational models in the CARNIVAL architecture rated the perceived and

generated actions similarly to non-expert human observers.

Methodology

An initial three-part study comparing the results of the agent’s creativity evaluation models

to the human perception of the novelty, unexpectedness, and quality of actions performed

by an agent was conducted on the Amazon Mechanical Turk platform. The study was con-

ducted with a sample of 50 online non-expert participants for each of the three properties

being compared. At a high level, participants were provided with video clips to compare

and asked to rate which video clip was more novel, more unexpected, or of higher quality.

Each participant was made to compare 20 pairs of video clips featuring the agent per-

forming actions from the training data set (see section 3.3.4) originally collected for the
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purposes of training DeepIMAGINATION (see section 3.4.3). Each pair was matched to

either compare two actions with a high and a low rating (experimental condition) or com-

pare two actions that both had medium ratings (control condition) for the property being

studied (say novelty). The primary study hypotheses were that there would be statistically

significant differences in the distributions of accuracy scores per participant for ratings that

matched the evaluation model’s choice for the higher-rated action between the experimen-

tal condition and the control condition in each of the three experiments involving novelty,

unexpectedness, and quality, respectively.

Each of the tasks for novelty, unexpectedness, and quality were conducted as a separate

task. Additionally, the novelty, unexpectedness, and quality ratings were calculated for

all actions in our data set, and then for each task, different actions were chosen. In other

words, the novelty evaluation task had different actions compared to the quality evaluation

task (which differed from the chosen actions for unexpectedness in turn), since the low,

medium, and high scoring actions would potentially be different for each axis of the creative

space.

For each of the studies, the properties of actions that the users were rating were defined

for the user before the task. However, there can be no guarantee that the definitions were

solely used by the user to make their choice. Additionally, each user was asked to define for

themselves criteria they would use to evaluate the creativity of an action performed with a

prop in a movie, theatrical play, or session of pretend play. They were also asked to choose

the video clip that featured the more creative action strictly using their previously-stated

criteria. They were asked at the end why they picked any notable actions over others in

terms of creativity as a way to get them to reflect on their decisions (even if it was a post

hoc rationalization).

The definitions given to participants included the following concepts and definitions

in language that tried to avoid being too technical. Novelty was defined as how different

or new or original the given action was to them in its performance as well as its intent
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compared to all the other comparable actions they might have been reminded of (even a

little bit) while watching it. Object surprise was defined as how unexpected the object was

that the current prop was imagined (or pretended) to be, given the look and feel of the

prop. For example, according to that metric, given a long cylindrical prop, it might have

been imagined to be a mop, which would be unsurprising; however, if it was imagined

to be a limp spaghetti noodle, that would be surprising. Action surprise was defined as

how unexpected a performed action was, given what object the prop was imagined (or

pretended) to be. For example, if the prop had been imagined to be a mop, it might have

been used to clean the floor, which would be unsurprising; however, if it was used to row

a boat, that would be surprising. Quality was defined as how smooth, and recognizable the

action was. As mentioned earlier, creativity was defined by the user, and they were asked

to strictly use that same definition when evaluating the actions for perceived creativity later

on. They were also asked about memorable reasons why the marked memorable actions

more or less creative than others.

Results

The results from the experimental and control conditions for novelty, unexpectedness, and

quality are displayed in table 3.1. The table shows the mean, median, and standard de-

viation for participant accuracy across each of the ten experimental and control pairings

in their task. The accuracy is calculated to mean whether the model accurately predicted

their response or not (or vice versa). The results for the user-defined creativity evaluations

across all three tasks are similarly displayed in table 3.2 and show a similar set of data.

Statistical hypothesis testing was done in order to measure the statistical significance of

our findings about the relative perceptual accuracy between the computational models of

novelty, unexpectedness, and quality. The null hypotheses (H0,1 to H0,7) stated that there

were no significant differences for results from a specific question. The alternate hypothe-

ses (H1 to H7) for each of the questions about novelty, unexpectedness (two hypotheses
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Table 3.1: Mean, Median, and Standard Deviation for participant accuracy.
High vs Low Med. vs Med.
µ M σ µ M σ

Novelty 0.4582 0.5 0.1595 0.5564 0.5 0.1619
Object Surprise 0.4818 0.5 0.1622 0.5364 0.5 0.1682
Action Surprise 0.4818 0.5 0.1645 0.54 0.5 0.1355
Quality 0.4473 0.5 0.1464 0.4 0.4 0.1427

Table 3.2: Mean, Median, and Standard Deviation for perceived creativity results from
novelty (N), surprise (S), and quality (Q) tasks respectively.

High vs Low Med. vs Med.
µ M σ µ M σ

Creativity (N) 0.4836 0.5 0.1719 0.4309 0.5 0.1538
Creativity (S) 0.48 0.5 0.1899 0.5327 0.5 0.1667
Creativity (Q) 0.4491 0.5 0.2045 0.4455 0.5 0.1942

each about the object surprise and action surprise respectively), quality, and user-defined

creativity (each task separately asked them about user-defined creativity leading to 3 alter-

nate hypotheses for each question about it). After finding non-normality in the distribu-

tions of responses using a Shapiro-Wilk [216] test, the non-parametric, repeated measures,

Wilcoxon Signed-Rank Test [218] was used to determine significance between the exper-

imental and control condition. The results from significance testing are in table 3.3 along

with the effect size to be interpreted as small effect > 0.1, medium effect > 0.3, and large

effect > 0.5.

Table 3.3: Wilcoxon Signed-Rank Test for novelty, surprise, and quality task results. Bold
significant at p < 0.5. Shows P-values and effect size (φ).

Novelty Object Surprise Action Surprise Quality
p φ p φ p φ p φ

Total 0.0005 0.466 0.0731 0.242 0.0458 0.270 0.1203 0.210
Creativity 0.1123 0.214 0.0793 0.237 - - 0.9024 0.017

These results show that observers could not reliably recognize the predictions of the
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computational models for evaluating creativity in terms of novelty, unexpectedness, and

quality over actions that were performed by a robot character. The hypothesis for this

approach was that there would be significant differences in the recognition accuracy for

the different pairs (i.e., between the high-low pair and the medium-medium pair). It was

expected that if the predictions matched human perceptions for these properties of ac-

tions, then the high-low pairing would be more obviously and reliably comparable than

the medium-medium pair. However, from the results, this did not turn out to be the case.

It can be seen from table 3.3 that the only significant differences in the distributions of

responses were in the recognition accuracies between high-low and medium-medium for

Novelty and Action Surprise. However, these effects were both in the opposite direction of

significance than we had hoped for. The effect size φNovelty indicates medium effect size

while the φActionSurprise indicate a small effect. The reported accuracies for all pairs were

close to the 0.5 random selection baseline, though they were consistently slightly lower

accuracy than that baseline for most measures in the high-low pairing and consistently

slightly above that baseline for medium-medium measures.

This is a negative result from the context of validating the agent’s models for creativity

evaluation in terms of perceptual similarity with human observers. There could be many

reasons for this result, including the knowledge and expectation disparity, the difference

between the conceptual representation of the action and the actual performance of it, the

difference between experiencing the system as a participant and an observer, and even pos-

sible errors like incorrect parameter configurations in the system. Some of these potential

reasons will be discussed in the following section.

Discussion

This study aimed to validate that the ratings from the creativity evaluation models percep-

tually matched a human observer’s ratings. The study provided evidence that the creativity

evaluation models did not succeed at matching the human observers’ perceptions of con-
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cepts such as novelty, unexpectedness, quality, or creativity. It is possible that this is always

going to be the case until the system gets enough knowledge, experience, and builds ex-

pectations to match humans. Alternatively, it is possible that in order to improve the effec-

tiveness of these models, the participant’s experiences and expectations have to be teased

out through personalization and modeling. This is the approach taken by Grace, Maher,

Mohseni, and Pérez [219] and points to a potential future direction to take for this work.

Another perspective perhaps, as the saying goes, is to consider that, “all models are

wrong, but some models are useful.” Therefore, a more fundamental question might be

whether the models are evaluating some useful aspect of an improvisational collaborator’s

or audience member’s experience to make a meaningful difference in the agent while im-

provising, in terms of their perceptions of enjoyment, creativity, and coherence. If the

models are doing this already through guiding the agent’s action selection but can’t match

the quality of experience, they are evaluating to overloaded concepts like novelty, surprise,

value, or creativity that may be acceptable. Results from the next set of evaluation studies

would indicate that this is the case since the creativity evaluation models are being used to

deliver identifiable creative arc negotiation and study participants seem to prefer sessions

with creative arc negotiation across different criteria. It could also be that the task of com-

paring individual actions directly in this experiment was too challenging for raters, whereas

the longer, session-length task provided more context for them to evaluate similar parame-

ters. More study is required to disentangle what exactly the system’s creativity evaluation

models measure in this case.

3.5.3 Evaluating Creative Arc Identification with Observers

This experiment is the first of three studies that evaluate the claims made in the thesis

statement directly (RQ5). The aim of the experiment is to understand whether observers of

an improvised performance can correctly identify trends in various parameters according to

the creative arc used to drive action selection in each experimental condition. The results of
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this study, if successful, would serve to provide evidence (in concert with other results) that

a) CARNIVAL agents successfully perform creative arc negotiation and that people can

recognize that as well as that b) the improvised performances resulting from using creative

arc negotiation within CARNIVAL are meaningfully different enough to allow people to

recognize those differences in the performances (in terms of the different arcs they perceive)

and thus, at least partially address the improvisational action selection problem.

Methodology

A survey-driven, non-expert, observer-rating study was performed in an attempt to evaluate

whether we had successfully created an embodied agent architecture that enables an agent

to negotiate a given creative arc while performing movement improv with non-experts. This

was performed in combination with a pilot, in-person, non-expert, participant/interactor-

rating, laboratory study described later (see section 3.5.5). Since this was an observer-rating

study, it was designed to measure the degree to which observers could correctly identify the

nature of the creative arc in different improvised performance sessions, where the agent’s

action selection was performed by creative arc negotiation, through observation.

The three creative arcs used in the sessions for comparison were respectively rising,

falling, and level arcs. The values for each creative arc (with each creative space dimension

in the closed interval [0.0, 1.0]) were as follows. The rising arc had a linearly rising arc

over five turns of the props game, each ranging from < 0.0, 0.0, 0.5 > to < 1.0, 1.0, 1.0 >.

The falling arc had the opposite arc from < 1.0, 1.0, 1.0 > to < 0.0, 0.0, 0.5 >. Finally,

the level arc always had the scores < 0.5, 0.5, 0.5 >. Future work could also compare

level arcs with values at < 1.0, 1.0, 1.0 > or < 0.0, 0.0, 0.5 > to see how those constantly

maximum and minimum values in the creative space to the current set of arcs.

One hundred non-expert raters on Amazon Mechanical Turk were asked to watch videos

of three different sessions between a researcher and the agent (which was controlled by

creative arc negotiation). For each video, they were then asked to choose whether a given
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property of the performance was rising, falling, or level (i.e., with one-third or 33.33%

probability of selecting correctly at random). Each video was taken of the agent controlled

by one of the three creative arcs described above. The different qualities that were asked

of them were novelty, object surprise, action surprise, quality, and user-defined creativity.

All raters were given the definition of each property in the question (as defined in section

3.5.2 previously) except user-defined creativity, which they were made to define before the

rating task started. The study hypotheses were that there would be significant differences

between the different arcs in terms of relative recognition rates among all participants.

Results

The relative percentages of participants who correctly identified the option for each rated

property of the video session that observers were asked to identify as rising, falling, or level

are presented in table 3.4. It is important to note that in this task, a random baseline would

score 33.33% of its choices correctly since there are three choices from which to choose an

answer.

Table 3.4: Relative recognition percentages between arc types in creative arc identification
task. Bold is higher between pairs.

Rising Falling Level
Correct Incorrect Correct Incorrect Correct Incorrect

Total 56.41% 43.59% 44.95% 55.05% 38.29% 61.71%
Novelty 57.14% 42.86% 37.14% 62.86% 20.95% 79.05%
Object Surprise 53.33% 46.67% 44.76% 55.24% 34.29% 65.71%
Action Surprise 47.12% 52.88% 37.14% 62.86% 42.86% 57.14%
Quality 73.08% 26.92% 61.90% 38.10% 60.00% 40.00%
Creativity 51.43% 48.57% 43.81% 56.19% 33.33% 66.67%

A Chi-Squared Test of Independence was used to calculate whether there were signif-

icant differences in relative recognition rates between the different arcs among all partic-

ipants. The null hypotheses (H0,1 to H0,5) for the five questions were that there was no

significant difference between the distributions of responses for each arc. The alternate
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hypotheses (H1 to H5) stated that significant differences did exist between the distributions

of responses for the three creative arc-driven performances. The results can be seen in table

3.5. A further Chi-Square Goodness of Fit test was performed to evaluate whether there

were significant results between correctly vs. incorrectly identifying the direction of the arc

for the given property. The null hypotheses (H0,6 to H0,10) for the five questions were that

there was no significant difference between the distributions of responses identifying the

arc for each property. The alternate hypotheses (H6 to H10) stated that significant differ-

ences did exist between the distributions of responses identifying the arc for each property.

The results for each rated property of the session from the Chi-Square Goodness of Fit test

are presented in table 3.6.

Table 3.5: Chi-Square test of independence for creative arc identification task. Bold signif-
icant at p < 0.5. φ is effect size.

X2 p φ

Total 35.3675 < 10−5 0.150
Novelty 29.1731 < 10−5 0.304
Object Surprise 7.7514 0.0207 0.157
Action Surprise 2.1444 0.3423 0.083
Quality 4.5762 0.1015 0.121
Creativity 7.0778 0.029 0.150

Table 3.6: Chi-Square goodness of fit for creative arc identification task arcs. Bold sig-
nificant at p < 0.5. φ is effect size. Object Surprise and Action Surprise contracted for
space.

Rising Falling Level
X2 p φ X2 p φ X2 p φ

Total 125.28 < 10−5 0.490 31.89 < 10−5 0.247 5.79 0.01608 0.106
Novelty 26.79 < 10−5 0.505 0.69 0.40763 0.081 7.24 0.0071 0.263
O Surprise 18.90 < 10−5 0.424 6.17 0.013 0.242 0.04 0.836 0.020
A Surprise 8.89 0.0029 0.292 0.69 0.4076 0.081 4.29 0.0384 0.202
Quality 73.92 < 10−5 0.843 38.57 < 10−5 0.606 33.60 < 10−5 0.566
Creativity 15.47 0.00008 0.384 5.19 0.0228 0.222 0 1 0

The differences in relative percentages of participants correctly identifying the rising,
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falling, and level creative arcs and the statistical hypothesis testing show that for the spe-

cific sets of significantly differing properties of the performances (i.e. for total response,

novelty, object surprise, and creativity), the videos of sessions with rising and falling arcs

could be identified reliably (note that 66% is twice the expectation for a random baseline

guess in this task due to the three options present for every question). It also shows the no-

table trend across all significantly different properties, that recognition accuracy for level

arcs is consistently and significantly as bad as random guessing. However, the effect sizes

to determine statistical differences across the different types of arcs are predominantly in

the small effect range. The Goodness of Fit results, however, show medium and large

effects consistently. They indicate that the properties of the video session that we were

interested in tracking over the course of the performance were reliably different from the

random guessing baseline recognition accuracies. This meant in general that these proper-

ties relating to the definition of creativity used in this system were reliably identifiable with

rising arcs, less so with falling arcs, and difficult to identify for level arcs. These results

are also discussed in more detail in section 3.6.1, especially their relationship to the claims

made in my thesis statement.

3.5.4 Evaluating Creative Arc Preferences with Observers

This observer evaluation study is the second of three that directly evaluates claims made

in my thesis statement (RQ5). This evaluation experiment aimed to understand the effect

of creative arc negotiation on the perceived enjoyment, agent creativity, and coherence on

observers as compared to a random action selection alternative. The results of this study,

if successful at increasing these perceptions for observers, would serve as evidence (along

with other results) that a) using creative arc negotiation successfully addresses the impro-

visational action selection problem, b) at least for observers, using creative arc negotiation

increases perceptions of enjoyment, agent creativity, and coherence.
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Methodology

A survey-driven, non-expert, observer-rating study was performed in an attempt to evaluate

whether an embodied agent that could negotiate a creative arc while performing movement

improv with non-experts was successfully able to increase audience and user perceptions of

enjoyment and agent creativity. Since we were using an observer-rating study, we designed

it to measure the degree to which observers would prefer videos of improvised sessions

between a researcher and an agent that was controlled by either creative arc negotiation or

random sampling from the agent’s sample space (though still using affordance-based action

variant generation, just not the other two main components).

The two conditions compared in the study were a creative arc negotiating agent and

a random sampling agent. Additionally, the creative arc negotiating agent in the three

respective videos was controlled by three different creative arcs — rising, falling, and level

creative arcs. These followed the same values for the arcs in the creative space as in the

Creative Arc Identification study (see section 3.5.3).

One hundred non-expert raters on Amazon Mechanical Turk were asked to watch videos

of two different sessions between a researcher and the agent, who was either controlled by

creative arc negotiation or performing random sampling. For each video, they were then

asked to choose whether they preferred the one on the left or the one on the right in a

forced-choice configuration based on the given property of the performance. Each video

had a baseline random probability of being selected half the time (or 50%). The differ-

ent qualities that they were asked to compare were enjoyment, user-defined creativity, and

coherence. Before the study, participants were made to define creativity before the rating

task started and asked to restrict themselves to that definition of creativity during the task.

The study hypotheses were that there would be significant differences between the choice

of creative arc vs. no arc action selection as well as between the different arcs in terms of

which ones were preferred as compared to the no arc condition.

The initial study was repeated with the same methodology using videos with just the
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agent’s turns spliced together from the original video (the researcher’s actions were re-

moved). This was done to mitigate any bias in the results from the human’s actions, i.e.,

in case the human’s actions contributed positively or negatively to the degree of preference

for a certain type of response from participants. This time, however, the sample size was

increased to be one hundred twenty participants.

Results

The percentage of participants who chose the creative arc-negotiating performances vs. the

random sampling performances for each rated property of the video session are presented

in table 3.7. The properties that participants were asked about included which session

they enjoyed more, in which session did the agent seem more creative, and which session

was more coherent. It is important to note that in this task, a random choice baseline

would score 50% since there are only two choices from which to choose an answer. Clear

trends are present from the table in the relative percentages of preference for creative arc

negotiating performances and random sampling performances.

Table 3.7: Relative preferences between an arc condition and a no arc condition in creative
arc comparison task. Bold is higher between pairs.

Rising Falling Level
Arc No Arc Arc No Arc Arc No Arc

Total 69.35% 30.65% 65.06% 34.94% 28.12% 71.88%
Enjoyment 63.46% 36.54% 62.50% 37.50% 28.57% 71.43%
Agent Creativity 64.08% 35.92% 56.73% 43.27% 31.73% 68.27%
Coherence 80.58% 19.42% 75.96% 24.04% 24.04% 75.96%

A Chi-Squared Test of Independence was used to calculate whether there were sig-

nificant differences in the proportion of creative arcs selected between the different arcs

among the participants. The null hypotheses (H0,1 to H0,5) for the five questions were that

there was no significant difference between the distributions of responses for each arc. The

alternate hypotheses (H1 to H5) stated that significant differences did exist between the
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distributions of responses for the three creative arc-driven performances. The results can

be seen in table 3.8. For properties that found significance during the preceding Chi-Square

Test of Independence, a further Chi-Square Goodness of Fit test was performed to evaluate

whether there were significant results in the preference of one video performance vs. the

other with respect to specific properties about which the question was asked (e.g., about

which one was more enjoyable). The null hypotheses (H0,6 to H0,10) for the five questions

were that there was no significant difference between the distributions of responses for each

arc to the expected outcome in each case. The alternate hypotheses (H6 to H10) stated that

significant differences did exist between the distributions of responses for the three creative

arc-driven performances with respect to the expected outcomes. The results for each rated

property of the session from the Chi-Square Goodness of Fit test are presented in table 3.9.

Table 3.8: Chi-Square test of independence for creative arc comparison task. Bold signifi-
cant at p < 0.5. φ is effect size.

X2 p φ

Total 129.27 < 10−5 0.372
Enjoyment 33.09 < 10−5 0.325
Agent Creativity 23.86 < 10−5 0.277
Coherence 85.35 < 10−5 0.524

Table 3.9: Chi-Square goodness of fit for creative arc comparison task arcs. Bold significant
at p < 0.5. φ is effect size. Agent Creativity contracted for space.

Rising Falling Level
X2 p φ X2 p φ X2 p φ

Total 46.45 < 10−5 0.387 28.32 < 10−5 0.301 59.97 < 10−5 0.438
Enjoyment 7.54 0.00604 0.269 6.5 0.01079 0.250 19.29 < 10−5 0.429
Creativity 8.17 0.00427 0.282 1.89 0.013 0.135 13.89 0.00019 0.365
Coherence 38.53 < 10−5 0.612 28.04 < 10−5 0.519 28.04 < 10−5 0.519

The results of this experiment suggested there were significant, reliably detectable pref-

erences for the creative arc negotiation-driven agents, at least for observers viewing videos
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of performances and comparing it with a random sampling agent baseline. All three prop-

erties (enjoyment, agent creativity, and coherence) were significantly different and showed

effect sizes ranging from small to large along with positive (and desirable) differences.

The effects for rising and falling arcs (with the effect stronger in general for rising arcs)

showed that coherence was the most improved with agent creativity and enjoyment follow-

ing closely behind.

The results from the repeat performance of this study with just the agent’s actions

spliced together in the video were analyzed exactly the same way as the previous case.

The results for recognition accuracies across arcs can be seen in table 3.10. After perform-

ing statistical significance testing, the results can be seen in tables 3.11 and 3.12.

Table 3.10: Relative preferences between an arc condition and a no arc condition in creative
arc comparison task with only agent turns (no human turns). Bold is higher between pairs.

Rising Falling Level
Arc No Arc Arc No Arc Arc No Arc

Total 84.44% 15.56% 69.08% 30.92% 21.85% 78.15%
Enjoyment 86.67% 13.33% 70.83% 29.17% 23.53% 76.47%
Agent Creativity 73.33% 26.67% 63.03% 36.97% 25.21% 74.79%
Coherence 93.33% 6.67% 73.33% 26.67% 16.81% 83.19%

Table 3.11: Chi-Square test of independence for creative arc comparison task with only
agent turns (no human turns). Bold significant at p < 0.5. φ is effect size.

X2 p φ

Total 314.01 < 10−5 0.54
Enjoyment 107.75 < 10−5 0.548
Agent Creativity 61.65 < 10−5 0.415
Coherence 158.51 < 10−5 0.664

The results for the repeated observer study with just footage of the agent taking its turns

in order showed an even stronger effect in the same direction as the previous study. This

allowed us to remove the effect of the human on the observed effects. It also allowed us
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Table 3.12: Chi-Square goodness of fit for creative arc comparison task arcs with only
agent turns (no human turns). Bold significant at p < 0.5. φ is effect size. Agent Creativity
contracted for space.

Rising Falling Level
X2 p φ X2 p φ X2 p φ

Total 170.84 < 10−5 0.689 52.28 < 10−5 0.382 113.17 < 10−5 0.563
Enjoyment 64.53 < 10−5 0.733 20.83 < 10−5 0.417 33.35 < 10−5 0.529
Creativity 26.13 < 10−5 0.467 8.08 0.00449 0.261 29.25 < 10−5 0.496
Coherence 90.13 < 10−5 0.867 26.13 < 10−5 0.467 52.45 < 10−5 0.664

to address suspicions of researcher bias, from the previous iteration of the study, in terms

of implicitly shaping the videos for evaluation. This is a valid concern since it is a co-

creative performance with creative responsibilities falling on the shoulders of both human

and computer improviser. It would be natural for there to be researcher bias or error in

constructing the comparison videos. However, the results from the repeated iteration of the

study lay those concerns to rest and improve on the previous results in terms of effect size

and increased preference for the creative arc negotiation versions of the system. Additional

discussion is also found on this topic in section 3.6.1 and how it relates to the claims in my

thesis statement.

3.5.5 Evaluating Creative Arc Improvisation with In-Person Participant Pilot

This pilot, participant study is the final of three that directly evaluates claims made in

my thesis statement (RQ5). The aim of this study was to repeat the previous two stud-

ies conducted for observer ratings and understand how the use of creative arc negotiation

would affect participants in terms of their perceptions of enjoyment, agent creativity, and

coherence. If successful at increasing these perceptions for participants, the results would

provide further evidence for a) the ability of creative arc negotiation to address the im-

provisational action selection problem and b) that using creative arc negotiation increases

perceptions of enjoyment, agent creativity, and coherence.
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Methodology

A pilot, non-expert, participant-rating, laboratory study was conducted to get quantitative

and qualitative feedback about the experience of interacting with the CARNIVAL archi-

tecture in the Robot Improv Circus installation. The study was aimed at understanding

whether participants/interactors could 1) identify whether the qualitative trends of different

properties of an improvised performance matched the specific creative arc that the agent

used to guide action selection and 2) whether they preferred the subjective experience of

interacting with the agent when it was using creative arc action negotiation or random sam-

pling from its action space to guide action selection. Additionally, since the study was

intended as an initial small-scale pilot study, importance was given to both the quantitative

responses that were received and the semi-structured interview content.

A total of 18 participants were recruited for the initial pilot study in two batches of

6 and 12 from a non-expert student population. However, due to differences in the tasks

performed by the two batches of participants, the number of responses for the tasks and

individual questions in the study differed between either 12 or 18 (these differences will

be noted when reporting results). Participants were first given a pre-study experience ques-

tionnaire to complete. They were then given an opportunity to get familiar with how to use

the VR system and the specific installation through a tutorial VR environment and a set

of trial rounds for the installation, respectively. Participants were next placed into one of

three groups at random and continued on to complete the two study tasks. The groups in

which each set of participants were placed will be explained in the individual contexts of

the two study tasks later. Finally, the study concluded after participants were debriefed and

compensated for their participation.

The first of the experimental tasks was creative arc comparison. For this task, the

participant was asked to perform two rounds of improvisation with the agent. The agents

were in different action selection conditions according to the specific task group that the

participant was assigned to for each session. After improvising with the agent twice, the
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participant was asked to compare the two sessions through a survey and a semi-structured

interview. The groups that participants were assigned to for this task were 1) rising arc vs.

no arc/random sampling, 2) falling arc vs. no arc/random sampling, and 3) level arc vs. no

arc/random sampling. The ordering for conditions within each group was randomized as

well.

The session comparison questionnaire for these tasks asked the following two to three

questions depending on which batch of the pilot was being run. “1) Which of the sessions

did you enjoy more?” “2) In which of the sessions would you say your partner was more

creative overall?” “3) Which of the two sessions would you say was more logical over-

all?” The first two questions received 18 responses, while the third question received 12

responses. Additionally, for the second question, participants were asked to reflect on their

own definition of creativity before completing this questionnaire and were asked to clar-

ify that definition during the semi-structured interviews. For both questions, participants

could select between the response options — session 1, session 2, both equally, and not

sure. During the semi-structured interview, participants were asked questions to clarify

their definition of creativity used in the previous questionnaire, memorable reasons or ex-

amples of interactions that led to them picking one session over the other for creativity or

enjoyment, and other reasons why they preferred one session over the other. Participants

were also asked for open-ended feedback on the interaction, experience, or other aspects of

the sessions.

The second experimental task was creative arc identification. For this task, the partic-

ipant performed two rounds of improvisation with the agent and answered questions after

each session about their experience. Each session was evaluated with a questionnaire and

a semi-structured interview. In this task, the three groups that participants were assigned to

at random were 1) rising arc vs. level arc, 2) falling arc vs. level arc, and 3) rising arc vs.

falling arc.

The session evaluation questionnaire for the arc identification task included the fol-
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lowing kinds of questions. 1) Whether novelty, object surprise, action surprise, and user-

defined creativity (with definitions for each property except user-defined creativity pre-

sented to them as defined in section 3.5.2) increased, decreased, or stayed the same over

time. 2) The level of overall quality (with the definition for quality presented to them as de-

fined in section 3.5.2) for the agent’s actions performed from very low quality to very high

quality on a five-point Likert scale. 3) Their level of agreement, on a five-point Likert scale

from ‘strongly disagree’ to ‘strongly agree,’ to the statement, “Over time, my enjoyment of

the experience increased.” The semi-structured interview questions involved asking them

what their definition of creativity was that they used for the questionnaire, whether there

were memorable reasons or examples to explain their responses to the various performance

trend questions. Additionally, participants were also asked for open-ended feedback on the

interaction, experience, or other aspects of the sessions.

Results

The results from the different questionnaires for the two study tasks are summarized and

presented in tables 3.13 and 3.14 as well as table 3.15. The first table summarizes the

relative differences in four possible preferences (creative arc, no arc, both, or neither) be-

tween the two conditions compared in the task (creative arc and no arc). The second table

shows the result of performing a Chi-Square goodness of fit test on the combined data for

comparing creative arc sessions against no arc sessions. Note that for both analyses of the

creative arc comparison task, the sample size was too small to split the conditions feasibly

according to arc type. The sample size for the creative arc identification study was not large

enough to show statistically significant differences in the distributions of results across arcs.

The initial results from the study will be expanded in the future, and the evidence will be

re-reviewed after increasing the sample size to get more confident results. Discussion of

the implications of this study as it relates to the thesis statement for this dissertation can be

found in section ??.
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Table 3.13: Relative preferences for arc, no arc, both, or neither between a creative arc
session and a no creative arc (random action selection) session in the participant-rating
creative arc comparison task. Bold is highest for the row. N is sample size.

Creative Arc No Arc Both Neither N

Enjoyment 38.89% 33.33% 27.78% 0% 18
Agent Creativity 55.56% 27.78% 5.56% 11.11% 18
Coherence 58.33% 8.33% 25% 8.33% 12

Table 3.14: Chi-Square goodness of fit between combined arc and no arc sessions for the
participant rating creative arc comparison task. Bold significant at p < 0.5. φ is effect size.
N is sample size.

X2 p φ N

Enjoyment 6.44 0.09188 0.598 18
Agent Creativity 10.89 0.01234 0.778 18
Coherence 8 0.04601 0.816 12

The qualitative results from the semi-structured interviews are still being analyzed.

However, they have already resulted in some useful questions for guiding the future di-

rections of this research. This includes questions about the implementation of creativity

evaluation models in the future and questions about the installation and interaction design

for an improvisational agent-based interactive installation. Some of the initial questions

that have arisen from reflection about them so far are as follows. 1) How could the in-

teraction design for the user change to better enable access to framing information that

non-experts can understand to explain how the agent’s creative process currently works?

This question became relevant when discussing the participants’ mental models of how the

agent arrived at a particular response. Some initial ideas on this topic can be seen in [220]

2) While some existing works have shown that framing does not have to be truthful, what

are the performative affordances for visualizing the system’s actual reasoning process to an

audience versus a post-hoc explanation? This question arose as a follow up to the previous

question during discussion within the research team. 3) Given how differently people seem

to experience the outputs of the creativity evaluation models, does the model need to local-
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Table 3.15: Session creative arc identification results for participants in pilot study. Four
participants P1 - P4 per creative arc type.

Arc Type + Question P1 P2 P3 P4

Rising Q1: Novelty Rising Level Rising Level
Falling Q1: Novelty Rising Level Rising Rising
Level Q1: Novelty Rising Rising Level Falling
Rising Q2: Object Surprise Rising Level Level Falling
Falling Q2: Object Surprise Falling Level Level Rising
Level Q2: Object Surprise Rising Rising Level Rising
Rising Q3: Action Surprise Rising Rising Rising Falling
Falling Q3: Action Surprise Falling Rising Level Falling
Level Q3: Action Surprise Falling Rising Rising Rising
Rising Q4: Quality Moderate Low Moderate Very Low
Falling Q4: Quality Low Moderate Low Very Low
Level Q4: Quality Low Moderate Low Low
Rising Q5: Creativity Rising Level Level Rising
Falling Q5: Creativity Level Level Rising Rising
Level Q5: Creativity Rising Rising Level Rising
Rising Q6: Enjoyment Increased Agree Agree Neither Strongly Agree
Falling Q6: Enjoyment Increased Agree Neither Agree Strongly Agree
Level Q6: Enjoyment Increased Agree Strongly Agree Agree Agree

ize its computation for the current user to be effective? Initial work in this area from [219]

suggests that it could be an effective strategy when dealing with the variety of human ex-

periences. However, this is difficult to implement when the agent’s expertise is much lower

than the human collaborator’s experience level (see section 3.3.6). 4) Users had conflicting

feedback on why something was good or bad. At least some of the conflict seems to arise

from who is being modeled as the experiencing agent for the creativity evaluation models.

Therefore, the following question arose as a potential direction for future exploration. How

can the agent model and combine multiple perspectives (e.g., audience vs. interactor) for

computationally evaluating creativity? 5) Finally, the discussions with participants resulted

in a fundamental question about the creative goals for the installation. Ultimately, who is

this installation for the audience or the interactor, and how should the design change to

make that clearer? Perhaps if framed for the participants as a performative, rather than,
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participatory, installation, the expectations for the experience would be clearer to a non-

expert (in contrast to a professional improviser who would subtly prioritize the audience’s

entertainment above other considerations). These questions aren’t necessarily easy to an-

swer, but they point to future directions for exploration of this work in the installation and

experience design space.

3.6 Discussion

The preceding set of evaluation studies with observers and participants of improvised per-

formance from the installation aimed to evaluate the claims in my thesis statement. In this

discussion section, results from all three evaluation experiments are synthesized together

in the following subsection. This is followed by a summative discussion subsection that

compares the evidence from these studies against the claims in my thesis statement to draw

conclusions its validity.

3.6.1 Evaluating Improvisation Using Creative Arc Negotiating with Observers and Participants

The aims for the three creative arc improvisation evaluation studies was to understand better

if the creative arc negotiation that the agent was performing actually made a difference to

users of the improvised performance whether as observers or participants. For example,

could observers and installation participants actually understand what kind of creative arc

an agent used in a given performance? Additionally, aside from identifying a difference

between these arcs, would observers or installation participants actually prefer sessions of

improvisation guided by this form of action selection?

The strong results from both of the studies involving observers comparing videos of

improvised performances with different creative arcs or performances with and without

creative arc negotiation were particularly notable to me for several reasons. Firstly, the

results from both studies suggested that despite the perceptual (or conceptual) mismatch

between observer ratings and ratings from the agent’s creativity evaluation models about
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actions within the domain (as evidenced by results in section 3.5.2), the agent was able to

produce a meaningful impact to an observer’s experience based on the presented experi-

mental variations. Secondly, the result that observers strongly preferred sessions where the

improv was guided by creative arc negotiation for action selection in comparison to ran-

dom sampling of the agent’s action space in terms of enjoyment, agent creativity, and co-

herence was a fundamental demonstration that creative arc negotiation did, in fact, address

the improvisational action selection problem, at least for observer ratings of the improvised

performances. Thirdly, the result that observers could identify differences between all three

kinds of arcs and preferred them (in comparison to random sampling) to different degrees

indicated that certain arcs might be better suited for improvised performance than others,

at least for observers. The existence of these preferences makes sense given the large body

of literature on the presence of specific (and limited) sets of arcs across narratives for dra-

matic tension and plot [221, 222, 223] or character affect [224]. Future work might have

creative arcs over longer sessions that rose and then fell accordingly. Fourthly, the result

that observers had a significant preference for random sampling over a flat arc was initially

unexpected. However, this could provide additional support for my dissertation’s thesis that

a continuously evolving experience over time results in increased enjoyment, coherence,

and perceptions of creativity, at least for observers and for the particular medium-level arc

that was evaluated.

The results from the in-person installation participant ratings indicated similar results

for creative arc preference for agent creativity and coherence but not for enjoyment (which

needed more data and study to show a significant preference conclusively in either direc-

tion). Creative arc identification did not yield significant results either, possibly due to

the much smaller sample size and the resulting loss of statistical significance. The sample

size was also too small to split the data according to arc type for the creative arc prefer-

ence/comparison studies, and so the results are presented purely in comparison of creative

arc negotiation (with any arc type) and no arc (i.e., random sampling) action selection.

133



The results from the two observer studies demonstrate strong effects in the hypothe-

sized direction and provide strong evidence to verify the claims made in my thesis state-

ment. The claims were also partially supported (to different degrees) by the results of the

pilot in-person installation participant studies (conclusively supporting it, despite the small

sample size, for increases in participant perceptions of agent creativity and coherence but

requiring more study/data to do the same for participant enjoyment). This is quite likely

due to the small sample size; however, there is some evidence from [225, 226] that suggests

that interactors in the midst of an ephemeral improvisational experience may have trouble

keeping track of longer-term effects. Kelso, Weyhrauch, and Bates [225] describes this as a

positive effect of interactive narrative experiences, saying that interactive narratives do not

need to preserve narrative coherence as strongly as other forms of narrative since partici-

pants will not be able to keep track of these longer-term causal links in any case. However,

perhaps the converse also applies to methods that attempt to show meaningful differences

in user experience for participants between different experimental interventions that em-

ploy system ablation. Kelso, Weyhrauch, and Bates’s finding also implies that it could

be more difficult to demonstrate working interventions in the user’s experience based on

longer-term effects in ephemeral, but temporally extended, participatory experiences like

movement improv.

3.6.2 Evaluating Thesis Statement

My thesis statement states that “embodied agents that address the improvisational action

selection problem using ‘creative arc negotiation’ increase perceptions of enjoyment, agent

creativity, and coherence in both observers and participants while performing movement

improv with non-experts.” The preceding section of this chapter presented a set of experi-

ments for evaluating the claims in that thesis statement. Throughout this section, I discuss

the results of those experiments and draw conclusions about the validity of my thesis state-

ment.
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The agent architecture CARNIVAL was designed directly to enable embodied agents

to use creative arc negotiation (albeit tailored to the Props game domain in some aspects).

Additionally, the results of the observer-rating creative arc identification study showed that,

at least for observers, the improvisational partner was able to select actions to follow a cre-

ative arc over the course of the improvised performance. This result was not fully replicated

with statistical significance in the laboratory participant-rating evaluation due to the sam-

ple size constraints on the study. However, at least for observers, my results validate the

claim that embodied agents within CARNIVAL successfully demonstrate the usage of

creative arc negotiation.

It is valid to claim that the agent architecture enabled improvisational agents to select

actions in near real-time, at least within the constraints of the chosen domain to facilitate

successful improvisation, since both participants were able to perform alongside the agent

and observers rated the improvisational performances higher than ‘no arc’ action selec-

tion. Additionally, different versions of the creative arc negotiation agents (with different

creative arcs) showed accurately identifiable differences in observer experiences and dif-

ferent versions of the agents (creative arc negotiation vs. no arc action selection) showed

consistently different preferences for those experiences (at least for observers). Finally,

the improvised sessions with creative arc negotiation were rated better for coherence than

an alternative that did not use creative arc negotiation. Therefore, it is valid to claim that

the improvisational action selection problem is successfully addressed by creative arc

negotiation as an approach, with strongly positive evidence from observers but with

initially positive evidence from participants that needs further study to become more

conclusive.

It has also been shown through public demonstrations/exhibitions, feedback from par-

ticipants, and the participant-rating in-person study of creative arcs that the Robot Improv

Circus is an installation that successfully allows participants to perform movement im-

prov with an embodied improvisational agent. Further audience members can successfully
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watch, cheer, and give supportive feedback to participants within the installation through

the design of the installation. Observers also prefer the version of the installation that per-

forms creative arc negotiation in terms of enjoyment, agent creativity, and coherence. These

results are partially replicated for in-person participants as well (with more study needed

to show a conclusive preference for enjoyment ratings). Therefore, embodied agents ad-

dressing the improvisational action selection problem using creative arc negotiation

(as shown in the preceding paragraph) can successfully perform movement improv

with non-experts. Furthermore, this interaction with the installation experience can

occur as either a participant or an audience member.

The results from the creative arc identification and creative arc preference/comparison

studies show that, at least for observers, there is conclusive evidence that action selection

using creative arc negotiation is preferred over an alternative that used random sampling

action selection in terms of observer perceptions of enjoyment, agent creativity, and coher-

ence. This evidence was even stronger when the human partner’s actions were removed

from the task, and only the agent’s actions were evaluated. Similarly, for participants of

the installation, initial evidence showed that perceptions of agent creativity and coherence

were higher for improvised performances with creative arc negotiating agents (perceptions

of enjoyment require more study to show a preference conclusively in either direction).

Therefore, it is valid to conclusively state that embodied agents addressing the impro-

visational action selection problem using creative arc negotiation (as shown earlier)

can perform movement improv with non-experts so that perceptions of agent creativ-

ity and coherence increase for both participants and audience members, but that per-

ceptions of enjoyment only conclusively increase for observers. More study and data

is required to show a conclusive increase in perceptions of enjoyment for participants

of the installation.
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3.7 Future Work

This chapter of my dissertation presented my research into improvisational agents for

movement improv domains using creative arc negotiation and how that affected differ-

ent aspects of observer and participant experience. This was done with the eventual goal

of enabling unconstrained human-computer embodied narrative improvisation in the fu-

ture. The research presented in this work involved creating a VR interactive installation

for human-computer movement improv in the Props game domain, creating an improvi-

sational agent architecture for addressing the improvisational action selection problem in

movement improv through creative arc negotiation, and evaluating the installation and ar-

chitecture according to the claims in my thesis statement. This section is a discussion of

the opportunities for future research in this area, the limitations of current research, and

future expansions or additions planned for this work.

3.7.1 The CARNIVAL Architecture

The CARNIVAL architecture for controlling improvisational virtual agents while perform-

ing movement improv with people was primarily designed to address the improvisational

action selection problem by creative arcs and creative arc negotiation to follow a trajectory

in its creative space over the course of an improvised performance. This idea was partly

inspired by the different types of arcs that are present in various creative domains and pro-

vide structure for interpreting and (possibly) generating artifacts from those domains. For

example, Aristotelian dramatic arcs [221] or Freytag’s Triangle [222] represent trajectories

of drama and tension within a narrative. It was also partly inspired by interactive narrative

research such as Mateas and Stern’s Façade, which successfully used Aristotelian dramatic

arcs to control the sequencing of story fragments called ‘beats’ together and guide user

experiences to follow a narrative arc over the course of the resulting interactive narrative.

The CARNIVAL architecture primarily used repeated cycles of learning from demon-
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stration and improvisation with that learned knowledge as a way to train a model to perform

affordance-based action variant generation the Props game domain. This process enabled

the use of a deep generative model for action variant generation from the agent’s learned

action space. The training requirements for the deep learning model enforced a cyclical

batch learning approach to training the model. This was an effective strategy for learn-

ing to generate variants from a large, continuous, searchable action space using a batch

of demonstrations. However, it did mean that the system could not perform interactive

learning over the lifetime of the agent, expanding its experience over time.

Future alternatives to the current approach of repeated learning, performance, and re-

training, could instead focus on retraining a copy of the model every N turns and then

swapping it with the original model in order to update the agent’s action space with new

actions perceived from the agent’s human collaborator with an online (rather than offline)

approach. Instead of retraining and then replacing the old model, another approach could

be to use a technique for combining generative networks like Guzdial and Riedl’s Combi-

nets [227] to create a blended network for the agent to use. In all such cases, new questions

arise that would need to be addressed. Firstly, since the system also learns episodic pat-

terns of action over time and the newly replaced or blended models would almost certainly

not map the same conceptual action classes to the same location in the new model’s latent

space, is there a way to procedurally maintain a mapping between the old and new coor-

dinates of the two models that is updated along with each model update? This would also

have to be done without interrupting the flow of execution for the agent.

Secondly, batch learning is done at present in order to allow the agent to replace its

current model of the action space with a new model of the action space without interrupting

the flow of the improvised performance (since it is done between performances). Since new

actions would also need to be segmented correctly and include all the ground truth semantic

interpretation annotations for the newly added gestures, there is an open question about

how best to obtain this new knowledge without interrupting the flow of the improvised
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performance and break the user’s immersion. This is another question that would need to

be addressed before the CARNIVAL architecture can use an online approach to interactive

learning. Acquisition of the segmented gestures and semantically interpreted knowledge

is currently made by human annotators segmenting and annotating the newly collected

data. Any online learning approach would also need to perform this segmentation and

annotation automatically. With enough time, this might be possible using semi-supervised

learning. However, given the open-ended nature of the domain and the relative lack of

knowledge/experience for the agent in comparison to their human collaborator, it might be

best to query them for the appropriate interpretative labels interactively. Users could also

be made to segment gestures better through improved interaction design. This particular

approach is straightforward future work at the moment. The main source of uncertainty

would be the nature of interaction design to best enable this sort of interactive learning

approach without pulling participants out of their improvisational experience too much.

Speech-based inputs have been considered but haven’t been added yet. Speech-based inputs

can suffer from recognition accuracy, however, especially for accented speech. In order to

better segment the action, participants could be trained to hit a buzzer at the start and

end of their turn, rather than only at the end as it currently works. Further segmentation

optimization could occur through advances in automated gesture segmentation (like [2])

tailored to the domain.

An alternative approach that could enable the agent to learn from interactors over its

lifetime in this work without replacing the existing learning pipeline with other interactive

learning approaches (as was the focus of prior work [2]) is to somehow collect more training

data in the form of actions (with both gestural and semantic components). Work on this

approach has already started and is currently being explored further and integrated. A

computer vision pipeline based on [228] has been trained to extract 3D human gestural

data from videos. The current plan is to use this on YouTube videos as a way to extract

gestural data from them. The system does not work with moving cameras at present, so
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video selection will also need to be performed before training or camera movement will

need to be detected and compensated for using additional techniques like [229]. Another

required improvement is that this pipeline does not currently extract semantic data from

the videos in addition to the gestures. Therefore, future work would also investigate the

extraction of descriptive natural language tags for gestures in those videos (similarly to

[230]). Results could potentially be improved by training the action extraction pipeline on

a combination of inputs consisting of matched sets of movies, scripts, and subtitles.

The affordance-based action generation used in this work to conditionally generate ac-

tion variants based on the physical attributes of the object was designed to encode a learned

mapping between the physical attributes of objects and the actions that could be generated

with them. This proved to be a successful strategy for partitioning the action selection

to appropriate objects as well as to generalize the generation to similar objects that the

model was not explicitly trained on but had similar physical attributes. However, the action

variants generated from DeepIMAGINATION have a lot of room to improve in different

ways. There are definite problems with modal collapse to some extent in the network.

This reduces its ability to generate action variants to match the ‘true’ distribution of ap-

propriate action variants from the agent’s action space. Current work on this aspect of the

research focuses on improving the different architectural variants used to implement Deep-

IMAGINATION. Current research suggests that we could combine CVAE with adversarial

approaches similar to [117] to arrive at better action variants. Future work could also add

significant contributions to the field by exploring improvements in the interpretability of

the model’s latent space as well.

The physical attributes representation for objects that was used in the affordance-based

action variant generation was iteratively refined by annotating Whose Line Is It Anyway?

[175] Props game props and refining the schema as challenges were faced. The current

representation conditions the DeepIMAGINATION model to implement affordance-based

action generation. However, the current implementation of this vector representational

140



schema loses the spatial and ordering relationships between the respective parts of the prop.

This could be addressed by using graph embeddings to learn the spatial and ordering encod-

ing of the prop’s parts while successfully being able to condition the DeepIMAGINATION

model with only minimal adaptations to the generative model architecture. Therefore, this

is a near term goal for the future of this representational schema in order to improve the

affordance-based action variant generation.

A long-term goal for the current object representation would be to automatically derive

the formal physical attributes for unfamiliar props based on their 3D models (either mesh-

based or point cloud-based). This could be done by automatically segmenting the parts of

the model and then classifying the segmented parts into their respective attributes (expand-

ing on [231, 232, 233]). This addition remains a long-term goal for the research due to

the significant computer vision challenges for developing a general system to perform this

classification task.

The improvisational response strategies developed to optimize action space search and

follow a creative arc in the agent’s creative space were adapted from prior work in the

LuminAI installation [50]. They were adapted from that research to work directly within

the parameter space of the DeepIMAGINATION latent space. This was done by mapping

strategies to conceptual ‘moves’ or operations within the latent space and utilizing the vec-

tor properties of that latent space. This has resulted in responsive creative arc negotiation

behavior for the agent, that at least for observers and to different degrees for participants as

well, elicits significant increases in perceptions of enjoyment, agent creativity, and coher-

ence.

The formalized improvisational response strategies, however, do not cover a full spec-

trum of strategies that improvisers have been known to use [19, 58]. This includes both

strategies that operate longer-term sequences than just the last action for example, being

able to implement longer-term improvisational conventions about procedurally establishing

and violating patterns. This particular example could be implemented using the creative arc
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itself; however, this is certainly not guaranteed to be the case. Therefore, there is a larger

question about how best to conceptualize or modulate interactions between a long-term

action selection mechanism (creative arc negotiation) and the short-term opportunistic se-

lection of actions (using improvisational response strategies). It is particularly important

to balance the (relatively rare) potential experiential benefits of formalizing this knowl-

edge with the amount of engineering and meta-authoring that the implementation process

involves.

Another potential area of future work for adding to the improvisational response strate-

gies is to directly attempt to generate actions with specific values in the agent’s creative

space. An example of this would be an unexpectedness-generation strategy, which would

integrate more closely with the surprise calculation measures to directly generate actions

that were unexpected. Another strategy in this vein would be a novelty-generation strat-

egy. This is already almost possible using the similarity-based recall strategy since it can

choose strategies at a given distance from the current action from the agent’s action space.

However, that is not a direct mapping to novelty, but a measure of gestural similarity (nov-

elty is aggregated similarity compared across all the different aspects of a given action and

bounded by a set of comparable actions). Quality-generation strategies would then need

to integrate with and optimize the agent’s quality metrics to generate actions with a given

quality score directly. These purely theoretical examples of strategies might all be use-

ful to the agent to speed up generation, however, at that point, the architecture potentially

would not need the other strategies since the three of these strategies could directly perform

creative arc negotiation in the agent’s creative space.

Strategy selection to optimize the exploration of regions of the agent’s action space

is a component of CARNIVAL that has been reserved for future research. One possible

method for accomplishing strategy selection toward this end would be to learn a policy for

the relative change in the agent’s position within the creative space, based on the selected

strategy. The application of this learned policy would allow the agent to choose the top N
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strategies that are most likely to move the agent in the direction of the target point on its

current creative arc based on its current location in the creative space.

The CARNIVAL agent’s use of creativity evaluation models is what enables it to follow

a given creative arc. A few different techniques were used to implement evaluation mod-

els for the novelty, unexpectedness, and quality of perceived and generated actions. From

sections 3.5.4 and 3.5.5, it can be seen that the improvisational agent was able to success-

fully influence the perceptions of observers and participants to significantly increase their

perceptions of enjoyment (for observers), agent creativity, and coherence. Additionally,

depending on the creative arc, (at least) observers were able to correctly identify some of

the trends in the creative arc in terms of the properties of novelty, object surprise, action

surprise, quality, and user-defined creativity. However, given the results of the paired com-

parison tasks that directly involved observers identifying which of two actions had a higher

score of those same properties, the models performed badly. More detail is used to under-

stand this finding in section 3.5.2, but from the current results, it is clear that the models

need to be improved. Additional work needs to be done to mitigate the apparent para-

dox between the model’s low prediction (or user recognition) accuracy across individual

actions and the fact that heuristic-guided search using those same models seems to signifi-

cantly positively impact observer perceptions of the resulting experience over longer-term

comparisons of experience.

Future work to improve these models could include the following techniques. All three

sets of models could use user feedback to tailor their recommendations to the individual or

population of individuals over time. For the agent’s model of unexpectedness, in particu-

lar, additional confidence-based modulation (or thresholding) as well as a more thorough

computational affect model based on a validated theory of affect (such as appraisal the-

ory [205] or the somatic marker hypothesis [206]) is required to develop the model into

one that measures surprise (rather than unexpectedness). The model of unexpectedness

could also use mechanisms for interactive learning to incorporate temporal expectations
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across actions over time from the agent’s growing experience (see [1] for some initial

ideas). Alternatively, this temporally-sequential expectation could be learned using nar-

rative knowledge-acquisition system such as [234, 235, 236]. The agent’s quality evalua-

tion model could also gain from incorporating additional quality heuristics for this domain.

This set of heuristics could include the aesthetic pleasantness of an action, learned func-

tions approximating user-generated ratings for actions, investigating computational models

of humor, and adding other measures of action coherence over time.

The main hypothesis guiding the CARNIVAL architecture was that agents could mit-

igate the improvisational action selection problem to create experiences that were more

enjoyable, with agents that seemed more creative, and to improvise performances that

seemed more coherent by using creative arc negotiation for agent action selection. This

approach seems to have been relatively successful, at least to observers of the installation,

given the results of the creative arc identification and creative arc comparison (see sections

3.5.3 and 3.5.4). Initial results suggested that this was also the case, albeit to a lesser ex-

tent, for participants as well with the results from in-person preference studies (see section

3.5.5). This approach was originally conceived as being applicable not only to movement

improv but also as a more general embodied model of improvisational creativity. With

some adaptation, the core ideas of the model could also be distilled into a general model of

improvisational creativity (regardless of the degree of embodiment). The validity of these

claims for generality needs to be evaluated by adapting this model to other domains of

embodied creativity. This is an important direction of future work for this research.

Another direction for improving this model of intrinsically motivated creative arc-

negotiation for action space search could be to expand the number and kinds of spatial

dimensions that the agent can measure and explore. These added dimensions could include

measures of the social cognition like Guckelsberger, Salge, and Colton coupled empower-

ment maximization [160] or models of affect like [237]. However, there is a potential open

question about the process of adding dimensions to the model. At what architectural level
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would a new dimension be added to the model? Is it merely a measure of quality, or does

it warrant addition as a fully explorable dimension in its own right? Additionally, until

there is a mechanism for the agent to learn which arc to use or to personalize the arc to a

particular individual, designers who create need to be able to map the intended experience

to the dimensions of the arc. Finally, adding more dimensions for the agent to evaluate

for every candidate action could also slow the agent down beyond a reasonable level of

improvisational responsiveness.

3.8 Conclusion

This chapter presented my research into improvisational agents for performing movement

improv in the Props game domain with non-experts within the Robot Improv Circus VR

installation. The embodied virtual agents were controlled by the CARNIVAL architecture

to enable them to perform creative arc negotiation for action selection in order to primarily

address the improvisational action selection problem. The chapter discussed the details of

the installation and the architecture before describing a number of validation and evaluation

experiments used to investigate the claims in my thesis statement for this dissertation. The

chapter concluded by discussing the limitations and future work of the research as well.
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CHAPTER 4

CONCLUSION

4.1 Summary

My dissertation presented the following thesis statement about improvisational agents and

embodied co-creativity for evaluation.

Embodied agents that address the improvisational action selection problem us-

ing creative arc negotiation increase perceptions of enjoyment, agent creativity,

and coherence in both observers and participants while performing movement

improv with non-experts.

I described research into building and evaluating a movement improv installation be-

tween embodied improvisational agents and non-expert human participants as well as a

human audience, in order to investigate my thesis statement. I described an interactive

VR installation for playing the Props game with a virtual robot character, called the Robot

Improv Circus, and the Creative ARc Negotiating Improvisational Virtual Agent pLatform

(CARNIVAL) agent architecture, for enabling embodied virtual agents to improvise with

non-expert human collaborators using creative arc negotiation as an action selection mech-

anism.

The improvisational action selection problem and how it could be addressed when situ-

ated within an improvisationally complex and semantically (or narratively) representational

domain like the Props game (in comparison to prior work [50]) was investigated through

this dissertation. The Props game involved representing and reasoning about gestural proto-

narratives (as in prior work [50]) as well as about the objects in the agent’s environment,

and the relationship between affordance, object, and agent as a way to constrain as well

as generalize action selection. Additionally, a novel form of intrinsically-motivated action
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selection was developed called creative arc negotiation to tackle the improvisational action

selection problem head-on in the more complex domain. Creative arc negotiation is ac-

tion selection based on following a specified trajectory through a conceptual creative space

of novelty, unexpectedness, and quality in concert with a fellow improviser’s movements

through that creative space as well. Operationalizing creative arc negotiation required the

agent to evaluate perceived as well as generated actions through computational models of

creativity evaluation as the novelty, unexpectedness, and quality of actions. The architec-

ture also relied on affordance-based action variant generation and improvisational response

strategies in order to perform real-time object-based gestural proto-narrative improvisa-

tion in the Props game with non-expert human collaborators, as required to investigate the

claims in my thesis statement.

The CARNIVAL architecture and the Robot Improv Circus installation were evaluated

using in-person user experience studies and observer rating studies to determine whether

the claims made in my thesis statement were supported by evidence. These experiments

(see section 3.5) demonstrate that the techniques used in the Robot Improv Circus success-

fully address the improvisational action selection problem and enable object-based gestu-

ral proto-narrative improvisation with non-expert human collaborators in the Props game.

Analysis of the evidence produced by the evaluation studies showed that ultimately, it is

valid to conclusively state that embodied agents addressing the improvisational action

selection problem using creative arc negotiation can perform movement improv with

non-experts so that perceptions of agent creativity and coherence increase for both

participants and audience members, but that perceptions of enjoyment only increase

conclusively for observers. More study and data is required to show a conclusive in-

crease in perceptions of enjoyment for participants of the installation.

The evaluation of this research further illuminates where the system succeeds and where

it needs to develop further in order to traverse the path towards unconstrained embodied

narrative improvisation better. The approach used in CARNIVAL is very different from my
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prior work in the LuminAI architecture [50], focusing on techniques from different parts of

the artificial intelligence landscape. In so doing, CARNIVAL succeeds at addressing many

issues that surround real-world, non-expert human-computer improvisation and embodied

co-creativity, through the integration of multiple technical solutions and formalizations of

ideas from human improvisational practice itself. In particular, this dissertation shows

that CARNIVAL is demonstrably adept at generating and evaluating a variety of creative,

coherent, and enjoyable actions over time and makes a definite impact on the experiences of

performance audiences/observers and installation participants (though to a lesser degree).

4.2 Contributions

The contributions of my research in this dissertation are as follows.

• A model of affordance-based action variant generation for parameterized generation

of action variants based on a given objects physical attributes.

• A formalized set of improvisational reasoning strategies for guiding an agents action

space search based on previous experience and the current improvisational context.

• Computational models for evaluating the creativity of perceived and generated action

variants in terms of their novelty, unexpectedness (as a measure of surprise), and

quality (as a measure of value).

• A model of creative arc negotiation for improvisational action selection while per-

forming movement improv with non-experts that increases both participant and ob-

server perceptions of enjoyment, agent creativity, and coherence.

• A publicly disseminated and validated interactive installation where embodied agents

can perform movement improv with non-experts.
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4.3 Toward Unconstrained Embodied Narrative Improvisation

The research presented in this dissertation focuses on the knowledge representations, soft-

ware architectures, and computational processes that can be used to develop improvisa-

tional agents for embodied co-creativity between non-expert humans and embodied virtual

characters. My research on human-computer embodied improvisation in prior work with

the LuminAI installation [50] and the research presented in this dissertation on the Robot

Improv Circus (chapter 3) interactive installations form a body of work that focuses on

addressing the various problems like the improvisational action selection problem that are

inherent in human-computer movement improv. The direction of my research over time

has formed a trajectory that points toward unconstrained embodied narrative improvisa-

tion in the future. In the following section, I present a sampling of significant remaining

challenges and potential directions for continuing research toward unconstrained embodied

narrative improvisation.

Unconstrained embodied narrative improvisation suffers from a severe knowledge-authoring

bottleneck as shown by various previous human-agent improvisational systems [26, 56, 50,

51]. A developmental approach to interactively learning a larger subset of knowledge re-

quired for this improvisation through human-agent co-creativity in virtual environments

was proposed in [1]. The proposed approach described a hierarchical (generalized di-

rected hypergraphical) representation (see figure 4.1) in which the embodied knowledge

of actions performed in the virtual world was perceived, segmented, clustered, interpreted,

and abstracted into increasingly high-level knowledge that is temporally and causally se-

quenced into graphical structures in each layer of the representation over time. Note that

this approach would require a large amount of human interaction for the agent to learn a

realistically large space of knowledge for use in unconstrained embodied narrative impro-

visation with people. Therefore, the improvisational scenarios would need to be diverse

and engaging enough to encourage continued participation.
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Figure 4.1: An example of learned knowledge represented within a proposed hypergraphi-
cal knowledge representation [1].

The hypergraphical knowledge representation proposed in [1] also presents a possible

solution to another significant challenge in the development of improvisational agents for

human-computer unconstrained embodied narrative improvisation — the deep integration

of the embodied knowledge learned by the agent with high-level structured knowledge po-

tentially obtained from mining corpora or from other large-scale knowledge repositories.

Similarly, the hypergraphical knowledge representation could also serve as an integrative

structure for fusing multimodal sensory percepts (speech, gesture, scene contents, images,

etc.) and the resulting combined knowledge at different levels of abstraction. However,

the proposed representation only demonstrated replay capabilities, with limited ability for

transformation and variant generation. Given the useful generational properties of vector

spaces and deep generative models as demonstrated within DeepIMAGINATION (see sec-

tion 3.4.3), it would be useful to investigate how the hypergraphical representations can
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be integrated together with vector spaces and deep generative models to enable knowledge

learning and integration with powerful generative capabilities.

The knowledge-authoring bottleneck in unconstrained embodied narrative improvisa-

tion is exacerbated by the different kinds of knowledge that would be required for it to

be successfully performed even with the use of interactive learning to mitigate the prob-

lem partially. A powerful addition to the interactive learning capabilities of an agent in

this domain would be large-scale mining (that also integrates mined actions into existing

learned knowledge) of required agent knowledge from the large number of videos on pub-

lic repositories online (as briefly mentioned in section 3.7.1). My initial work in this area

adapts [228] into an integrated pipeline for parsing the gestural content from fixed-camera

YouTube videos of a single human figure performing a single action per video. Extensions

to this initial work are necessary, in terms of automating action segmentation, annotating

segmented actions with semantic content from various sources, learning from (or correctly

handling) multiple figures in a single video, and compensating for video artifacts like cam-

era motion. As research in visual scene understanding (such as in [238]) progresses beyond

static, synthetic scenes, it will likely be possible to learn the accompanying 3D scene rep-

resentations of the environments within which the sourced videos are situated. This would

create a diverse set of virtual worlds for situating learned actions for the agent. It would

also provide a diverse set of virtual worlds for situating new improvised scenarios with

people as described above.

A significant focus of the CARNIVAL agent architecture is the creation of meaningful

improvised experiences over time in ill-defined improvisational domains. This works for a

domain like the Props game that has less narrative structure compared to unconstrained em-

bodied narrative improvisation. Taking long-form improv theater as an example of the latter

class of domain, it is likely that there will be strong expectations for coherent goal-driven

behavior interspersed with unexpected or locally-incoherent behavior that is justified by

subsequent actions (e.g., sequences of platform-tilt-justification [129] or finding the game
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of the scene [132]). This requirement for fluidly navigating the spectrum of goal-directed to

exploratory creative action generation is another significant challenge for improvisational

agents performing unconstrained embodied narrative improvisation. The creative arc ne-

gotiation process offers a potential initial and partial solution to this problem as repeated

rising and falling sections of a long, creative arc. However, creative arc negotiation is likely

a complementary mechanism to the reasoning required rather than an exact solution to the

previous problem.

The research presented in this dissertation is an initial exploration in the direction of

unconstrained human-computer embodied narrative improvisation. None of the problems

stated earlier in this section can easily be solved at this time. However, building on the

initial results described in this dissertation and continuing future research along the direc-

tions described in this section, it is possible that unconstrained human-computer embodied

narrative improvisation will someday number among the creative outlets, performing arts,

interactive experiences, and expressive media where humans and computers can create

seamlessly together.
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